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Regional high-resolution climate projections are crucial for many applications, such as
agriculture, hydrology, and natural hazard risk assessment. Dynamical downscaling,
the state-of-the-art method to produce localized future climate information, involves
running a regional climate model (RCM) driven by an Earth System Model (ESM), but
it is too computationally expensive to apply to large climate projection ensembles. We
propose an approach combining dynamical downscaling with generative AI to reduce
the cost and improve the uncertainty estimates of downscaled climate projections.
In our framework, an RCM dynamically downscales ESM output to an intermediate
resolution, followed by a generative diffusion model that further refines the resolution
to the target scale. This approach leverages the generalizability of physics-based models
and the sampling efficiency of diffusion models, enabling the downscaling of large
multimodel ensembles. We evaluate our method against dynamically downscaled
climate projections from the Coupled Model Intercomparison Project 6 (CMIP6)
ensemble. Our results demonstrate its ability to provide more accurate uncertainty
bounds on future regional climate than alternatives such as dynamical downscaling
of smaller ensembles, or traditional empirical statistical downscaling methods. We
also show that dynamical-generative downscaling results in significantly lower errors
than popular statistical downscaling techniques, and captures more accurately the
spectra, tail dependence, and multivariate correlations of meteorological fields. These
characteristics make the dynamical-generative framework a flexible, accurate, and
efficient way to downscale large ensembles of climate projections, currently out of
reach for pure dynamical downscaling.

climate change | regional climate | climate risk

Regional climate projections below the 10 km scale represent a valuable source of
information to stakeholders in need of climate risk assessments. Higher-resolution
projections enable a more faithful representation of orography (1), land–atmosphere
interactions (2), and mesoscale convective systems (3), all of which greatly influence the
magnitude and frequency of local extreme weather events (4, 5). Localized climate data
are particularly necessary in coastal and mountainous regions, where landscape changes
at the kilometer scale largely shape the local climatology (6–8). Sectors in need of this
kind of granular information include agriculture (9), hydrology (10), energy (11), and
natural hazard risk assessment (12, 13).

The need for high-resolution data has prompted the creation of downscaling
frameworks, where a statistical or dynamical model refines the projections provided by
a coarser-resolution Earth System Model (ESM) over an area of interest (14). Projecting
regional climate change through downscaling is not without caveats: biases in the driving
ESM can be exacerbated by the regional model—the so-called “garbage in, garbage out”
problem (14, 15). Nevertheless, techniques to alleviate such biases are maturing (16, 17),
and downscaling remains the best source of climate data at impact-relevant kilometer
scales (18). Dynamical downscaling, in which a high-resolution regional climate model
(RCM) is driven with the large-scale and boundary conditions from a global model, is
widely recognized as the state-of-the-art method to obtain regional information about
future climates (19). Dynamical downscaling is often performed in nested stages, each
one increasing the resolution and reducing the spatial extent of the simulated domain
(20–23). While dynamical downscaling enables trading spatial extent for resolution, it
remains a computationally intensive task: a computational budget sufficient to simulate
the global climate at 100 km resolution would fall short of that required to downscale
a region the size of Spain to 10 km resolution. Computational constraints also limit
the number of global projections that can be dynamically downscaled, resulting in data
coverage gaps and an incomplete assessment of model uncertainty and internal variability
in regional climate projections (24, 25).
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Fig. 1. Schematic of the dynamical-generative downscaling framework. A regional climate model (RCM) is used to downscale global simulations from different
ESMs to an intermediate grid. A generative AI system (GenAI), such as a diffusion model, is then used to further downscale the RCM output to the desired
resolution. The topographic height is shown at 100 km (Left), 45 km (Middle), and 9 km (Right) resolution, to showcase landscape changes at the different scales
of the process. Water bodies are highlighted in blue.

To address these issues, we propose to leverage generative AI
jointly with dynamical downscaling to make downscaling mul-
timodel climate projection ensembles feasible. In our proposed
framework, sketched in Fig. 1, an RCM is first used to downscale
ESM output to an intermediate, but still coarse and inexpensive,
resolution. In a second stage, a probabilistic diffusion model is
used to efficiently downscale the intermediate RCM fields to the
target resolution. Notably, the first dynamical downscaling stage
maps input ESM data to atmospheric states that are consistent
with the dynamics, resolution, and subgrid-scale parameteriza-
tions of a single RCM. This alleviates the need of the generative
stage to generalize across the wide range of resolutions and physics
of independent ESMs, and enables us to learn a generative model
capable of downscaling multimodel ensembles using as training
data dynamically downscaled output from a single ESM.

The output from the first stage is then fed into a generative
diffusion model, which completes the downscaling process inex-
pensively, making efficient use of modern accelerators. Moreover,
the generative stage enables sampling the uncertainty of the
high-resolution fields given their large-scale context, retaining
variable and spatial correlations that are crucial to assess the
likelihood of compound extreme events (26, 27). This property
provides additional downstream value beyond the computational
benefits of deterministic statistical downscaling (28–30) and
RCM emulators (31–34), neither of which provide a measure
of downscaling error. Altogether, dynamical-generative down-
scaling enables obtaining regional climate projections with more
accurate uncertainty bounds than those afforded by statistical
downscaling methods or computationally limited dynamical
downscaling approaches.

Our methodology is inspired by the remarkable ability of
probabilistic diffusion models to perform conditional sampling
of high-dimensional meteorological fields (35–38). Prior work
has established the utility of generative models for downscaling
short-time precipitation forecasts using radar data (39), and
for downscaling historical weather reanalyses (36, 40). Here,
we demonstrate how probabilistic diffusion models trained on
data from a single ESM can be used to downscale multimodel
climate projections, relying on the proven generalization
abilities of physical RCMs. This task requires generalization to
unseen climate forcings and is therefore more challenging than
downscaling present weather. We evaluate the merits of our
approach using as ground truth dynamically downscaled climate
projections from the CMIP6 ensemble.

Results

We demonstrate our dynamical-generative downscaling frame-
work using hourly data from the recently developed Western
United States Dynamically Downscaled Dataset (WUS-D3)

(41). WUS-D3 contains nested downscaled climate projections
of a CMIP6 multimodel ensemble over the western United
States. The first downscaling stage covers the central domain
shown in Fig. 1 along with a 675 km east Pacific extension,
at an intermediate resolution of 45 km. The second and final
stage yields climate projections covering the rightmost domain
depicted in Fig. 1 at 9 km resolution. The geographical diversity
of this region cannot be fully captured by coarse-resolution
simulations and highlights the need for downscaled climate
projections.

The CMIP6 climate projections in WUS-D3 are taken
from the ScenarioMIP intercomparison project (42) and follow
the anthropogenic forcing conditions specified by the Shared
Socioeconomic Pathway 3 (SSP3-7.0) (43). Our goal is to
capture the internal variability and model uncertainty of climate
projections under this forcing. From the WUS-D3 multimodel
ensemble we select 8 ESMs for which historical biases, as well
as interpolation errors in the sea surface temperature of the Gulf
of California, were removed prior to downscaling (see Materials
and Methods for more details). The RCM used for dynamical
downscaling is the Weather Research and Forecasting Model
(WRF), in its version 4.1.3 (44).

We seek to substitute the dynamical downscaling stage from
the intermediate 45 km resolution to the final 9 km resolution
with a generative model. This dynamical downscaling stage
is roughly 40 times more computationally intensive than the
first downscaling stage to 45 km resolution, covering about a
third of the area with 5 times higher resolution. Therefore,
our dynamical-generative downscaling framework is designed
to overhaul a component that represents more than 97.5% of
the cost of the original system. To this end, we train a Regional
Residual Diffusion-based Downscaling (R2-D2) model to sample
the probability density function of the residual between the fine
(9 km) and coarse (45 km) resolution values of the meteorological
fields specified in Table 1. Sampling with R2-D2 is highly
efficient: with a batch size of 32 samples on 16 NVIDIA A100
GPUs, the model can generate over 800 downscaled samples per
hour.

The R2-D2 model is a conditional probabilistic diffusion
model that samples high-resolution residuals conditioned on
the coarse resolution input data, as well as additional static
input fields such as the topographic height at the target 9 km
resolution. As in previous studies, we target the appropriate
residuals in the generative learning task to facilitate learning and
greatly improve generalization (35, 36). The residual modeling
approach, combined with the mapping of the parent ESM fields
to a common effective resolution provided by WRF in the first
dynamical downscaling stage, enables us to train a general gener-
ative downscaling model using data from a single CMIP6 model.

2 of 9 https://doi.org/10.1073/pnas.2420288122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 I
gn

ac
io

 L
op

ez
-G

om
ez

 o
n 

A
pr

il 
25

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
10

4.
13

5.
18

0.
22

8.



Table 1. List of fields used as inputs and outputs to the
generative model
Field Type (resolution)

Temperature at 2 m Input, Output
Specific humidity at 2 m Input, Output
Zonal wind at 10 m Input, Output
Meridional wind at 10 m Input, Output
Surface pressure Input, Output
Precipitation over last 24 h Input, Output
Precipitation over last 12 h Input
Precipitation over last 6 h Input
Surface downwelling longwave flux Input
Surface upwelling longwave flux Input
Surface downwelling shortwave flux Input
Surface upwelling shortwave flux Input
Surface runoff Input
Snow water equivalent Input
Land mask, terrain height Input (9 km)
Latitude, longitude Input (9 km)
Orographic variance Input (9 km)

All inputs are taken from the 45 km simulation unless otherwise noted.

We present dynamical-generative downscaling results from an
R2-D2 model trained on 80 y (2014–2094) of CanESM5 SSP3-
7.0 climate projection data (45). As shown in SI Appendix, our
results are robust to the choice of training ESM. Model skill
and generalization to unseen ESMs are assessed by downscaling
the full 8-model ensemble, using the dynamically downscaled
ensemble as the reference. The evaluation period spans 2095–
2097, equivalent to 24 simulation years from a single climate
projection. Two statistical downscaling baselines are included for
comparison: Bias Correction and Spatial Disaggregation (BCSD)
(46–48), and the STAR-ESDM method used in the Fifth US
National Climate Assessment (49, 50). Both baselines utilize
input data from the 45 km simulations and share training data
with the R2-D2 model. Finally, bicubic interpolation of coarse-
resolution fields to the target resolution is included as a non-
value-added baseline.

Generative Downscaling Skill. The generative downscaling op-
erator in our framework is inherently probabilistic, since the
high-resolution fields in WUS-D3 are only constrained to follow
their coarse-resolution counterpart at the domain boundaries.
Boundary coupling prevents chaotic divergence of the large-scale
fields but allows the finer scales to evolve freely (51). We assess
the probabilistic skill of the R2-D2 model by generating 32-
member ensembles for each evaluation date and employing the
continuous ranked probability score (CRPS) as the error metric.
The CRPS reduces to the mean absolute error (MAE) in the
deterministic limit, facilitating comparisons with deterministic
systems (52). The preservation of climate change signals by
R2-D2 is demonstrated by considering the end-of-century
and climate change bias. SI Appendix provides evaluations of
additional fields and metrics, as well as individual generative
samples.

Figs. 2 and 3 demonstrate that R2-D2 ensembles provide
significant added value, reducing downscaling CRPS by over 40%
compared to the baselines across all fields considered. R2-D2 also
preserves realistic multivariate correlations, as evidenced by the
kernel density estimates of near-surface winds at the Shepherds
Flat wind farm in Oregon (Fig. 2I ). Capturing multivariate
correlations ensures that downscaling skill is maintained for

derived fields, such as relative humidity (Fig. 2B). Importantly,
correlations between extremes are also realistic. Fig. 2 J–L
illustrates this in terms of the tail dependence (53) of hot and dry
summer extremes in the southwestern United States, which have
increased in frequency in recent decades (54). Many downstream
climate downscaling applications, like hydrologic forecasting
(55, 56), rely on realistic spatial structure in meteorological
inputs. The radially averaged energy spectrum of the generative
samples, which characterizes the realism of the downscaled
output, follows closely that of the dynamically downscaled fields
(Fig. 2 E–H ). Minor differences are observed for precipitation,
but these are still smaller than those observed for the baselines
considered.

A fraction of the error reduction afforded by downscaling
methods can be attributed to the correction of systematic
climatological differences between the coarse and high-resolution
fields. The reduction of these differences can be assessed in
terms of the long-term bias, illustrated in Fig. 3 for near-surface
temperature, precipitation, and wind speed. Quantile-mapping
methods like BCSD and STAR-ESDM effectively correct biases
in directly modeled variables by design, achieving average bias
reductions over 57% for precipitation and 77% for temperature
relative to interpolation (SI Appendix). R2–D2 matches and
can even exceed the debiasing skill of quantile-based methods,
as demonstrated by the noticeable reduction in near-surface
temperature bias near the Great Salt Lake (Fig. 3 A and M ).
It also provides unbiased estimates for derived variables like
wind speed, which simpler statistical methods may struggle with
(Fig. 3E). R2-D2 ensembles preserve climate change signals in
multimodel projections, as shown in Fig. 2 C and D for near-
surface temperature and precipitation.

In addition to debiasing, the R2-D2 model further reduces
the downscaling error by capturing the distribution of high-
resolution anomalies conditioned on the coarse-resolution fields.
This amounts to a general reduction of the downscaling error
for all fields and over all regions compared to quantile-based
methods, as presented in Fig. 3, and in SI Appendix in terms of
the root mean square error. The enhanced conditional sampling
skill provided by the R2-D2 model is important for applications
that focus on particular events, such as extreme event attribution
(57, 58) and climate storyline analysis (59, 60).

Quantifying Uncertainty in Multimodel Climate Projections.
Quantifying model uncertainty and internal variability is crucial
for accurate regional climate risk assessments but generally
unaffordable through pure dynamical downscaling (24). We
analyze the ability of dynamical-generative downscaling to
capture the full distribution of regional climate projections by
downscaling end-of-century multimodel projections under the
SSP3-7.0 forcing scenario. Reliable estimates of the regional
projection quantiles are particularly important, as they directly
impact the accuracy of climate risk forecasts.

Alongside BCSD and STAR-ESDM, we compare our frame-
work to a cost-saving strategy common in dynamical down-
scaling: a priori ESM selection (25). This method involves
dynamically downscaling climate projections from a select subset
of ESMs to reduce computational costs, albeit at the expense of
diminished model uncertainty quantification. To emulate this
approach, we create and evaluate 4-member subensembles from
the original model ensemble, effectively halving the downscaled
ESM ensemble size. This alternative remains significantly more
computationally intensive than our hybrid approach, which
only requires dynamical downscaling of a single ESM to 9
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Fig. 2. Downscaling skill measured by land-averaged CRPS (A and B), absolute climate change bias (C and D), and energy spectra (E–H) for selected fields.
The last row illustrates (I) the kernel density estimates (KDEs) of spring (March–May) near-surface winds near Shepherds Flat, and (J–L) the tail dependence of
summer (June–August) hot and dry extremes. KDEs are shown for dynamical downscaling (blue shade), R2-D2, BCSD, and STAR-ESDM (legend in H). Results are
computed from 4-hourly (A–H) or daily (I–L) data spanning years 2095–2097 of the multimodel SSP3-7.0 projection ensemble. The reference climate in (panels
C and D) is evaluated over 2025–2027. R2-D2 employs 32-member ensembles.

km resolution for generative model training. We construct four
such subensembles to ensure coverage of all available ESMs and
mitigate the influence of model selection criteria.

Fig. 4 A–C evaluates the land-averaged MAE of the multi-
model projection quantiles predicted by the dynamical-generative
framework for selected variables and seasons, with respect to the
full dynamically downscaled multimodel ensemble. Multimodel
ensemble quantiles are computed using daily snapshots from all
ESMs over the periods of June–August (Summer), September–
November (Fall), and December–February (Winter). Daily
frequency is chosen to prevent the diurnal cycle from domi-
nating the projection distributions in variables like temperature.
Therefore, the distributions shown capture the spread from
internal variability and model uncertainty, and the lowest and
highest quantiles represent extreme conditions with respect to
the seasonal climatology. SI Appendix illustrates the spatial
distribution of end-of-century extremes, including their projected
climate change shifts, as determined by the different downscaling
methods.

Fig. 4A presents results for the summer near-surface wet-bulb
globe temperature (WBGT), computed following the simplified
definition used by the Australian Bureau of Meteorology (61);
all derived variables are defined in SI Appendix. The WBGT
measures heat stress, accounting for both temperature and
humidity. Accurately capturing its summer daytime distribution,
especially its upper quantiles, is important for extreme heat
risk assessment. The dynamical-generative approach surpasses all

baselines in this task. Its downscaled climate projections match
the target distribution better at all quantiles, reducing the 99%-
quantile error by over 20% compared to 4-member subensembles
and over 40% compared to the statistical downscaling baselines.

Quantile errors are also shown for fall near-surface wind
speed and winter precipitation in Fig. 4 B and C. The
proposed framework yields 99%-quantile error reductions of
over 10% for wind speed and precipitation with respect to
the best performing baseline, demonstrating the consistently
superior performance of R2-D2 across seasons and downscaled
fields. Results for additional variables and spring can be found
in SI Appendix. The difference between dynamical-generative
downscaling and subensemble dynamical downscaling is more
substantial in variables for which model uncertainty is an
important contributor to future climate uncertainty. In the
case of temperature, statistical downscaling can also outperform
pure dynamical downscaling of smaller ensembles. However,
for variables that show a less pronounced intermodel spread
contribution to the total uncertainty, such as wind speed, pure
dynamical downscaling of subensembles is superior to BCSD
or STAR-ESDM. The dynamical-generative approach improves
upon the baseline approaches in most cases, particularly for
extreme quantiles.

Local future climatological distributions projected with our
framework are compared to the target distribution and the base-
lines in Fig. 4 D–F for selected regions. Summer temperatures
in the coastal city of Ensenada, in Baja California, are strongly
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Fig. 3. Spatial distribution of downscaling bias (odd columns) and CRPS (even columns), shown for near-surface temperature, precipitation, and wind speed.
Results are computed from 4-hourly data spanning years 2095-2097 of the multimodel SSP3-7.0 climate projection, and shown for BCSD (A-F ), STAR-ESDM (G-L),
and 32-member R2-D2 ensembles (M-R). The insets show the land-averaged absolute value of each metric.

affected by the inland extent of marine stratocumulus cloud decks
(62). This makes Ensenada a location where downscaling can add
important value in assessments of extreme heat risk. As shown
in Fig. 4D, R2-D2 is able to track well the quantiles projected
by the full dynamically downscaled ensemble, even at the tails of
the distribution.

Downscaled projections are similarly essential for fire risk
assessment in Southern California, where the hot and dry Santa
Ana winds can fan wildfires in the fall, before the onset of the
rainy season (7). The wildfire potential near Irvine, California,
is explored in Fig. 4E in terms of the weather component of
the Santa Ana Wildfire Threat Index [SAWTI; (63)], which is
proportional to the kinetic energy of the near-surface winds and
the dewpoint deficit. In this case, R2-D2 accurately captures the
risk of the conditions most conducive to wildfires, characterized
by high values of SAWTI. Both BCSD and STAR-ESDM
underestimate the future wildfire risk. Finally, results are also
shown for winter precipitation over Portland, Oregon, in Fig.
4F. In this case, too, the climatological distribution projected by
the dynamical-generative framework closely follows that of the
full dynamically downscaled climate ensemble, at a small fraction
of the cost.

Regional Analysis of Compound Extremes. We further demon-
strate the ability of dynamical-generative downscaling to capture
regional compound extremes by analyzing the strongest Santa
Ana wind event projected by the dynamically downscaled
multimodel ensemble over the period September–November

2095. The event is selected as the 00 UTC snapshot with
the highest average SAWTI over Southern California in the
dynamically downscaled ensemble. This Santa Ana wind event
occurred on November 13, 2095, of the SSP3-7.0 projection
corresponding to the forcing model EC-Earth3-Veg (64). Fig.
5 B and C depict the 45-km resolution conditions during
this event with respect to the fall climatology. The condi-
tions on this date were characterized by stronger-than-usual
northeasterly winds and anomalously dry air, particularly near
the coast.

High spatial resolution is crucial to resolve the local accelera-
tion of Santa Ana winds as they make their way from the Mojave
Desert to the coast through the mountain passes, depicted in
Fig. 5A. The wind flow and SAWTI values of the dynamically
downscaled simulation are shown in Fig. 5E. The 9-km WRF
simulations capture the deflection of the flow by the mountain
ranges and the intensification of wildfire risk downstream, as
the hot and dry desert air descends into the valleys and coastal
areas of Southern California. R2-D2 captures these patterns as
well, projecting similarly strong SAWTI conditions along the San
Fernando and Santa Clara River valleys, and extending offshore
into the Channel Islands. In contrast, STAR-ESDM fails to
capture the offshore flow and high SAWTI conditions over the
Channel Islands and tends to overestimate wildfire risk upstream
of the mountain passes (Fig. 5G). BCSD is unable to capture
the magnitude and spatial structure of wildfire risk, due to its
inability to map coarse-resolution conditions to high-resolution
climatological anomalies with realistic correlations (Fig. 5H ).
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A B C

D E F

Fig. 4. Assessment of downscaled multimodel ensemble distribution fidelity. Top: Mean absolute error (MAE) of downscaled quantiles over land, with respect
to the quantiles of the full dynamically downscaled ensemble. Results shown for summer WBGT (A), fall wind speed (B), and winter precipitation (C). Bottom:
Quantile-quantile plots of summer WBGT (D), SAWTI (E), and precipitation (F ) at specific locations with respect to the full dynamically downscaled ensemble.
Quantiles from 0.01 to 0.99 are computed using daily snapshots at 00 UTC covering three-month seasons of 2095 to 2097. Results are shown for cubic
interpolation, BCSD, STAR-ESDM, the generative model R2-D2, and for the average over 4-member dynamically downscaled subensembles. Uncertainty
estimates represent the bootstrapped sample SD.

Wildfire risk in Southern California is most pronounced when
strong Santa Ana winds blow over very dry vegetation, which
acts as fuel. Since vegetation is at its driest before the start of

the rainy season in late fall, projecting the timing of Santa Ana
wind events is crucial to assess changes in wildfire risk over
time. Fig. 5D illustrates the typical timing of the strongest

Fig. 5. Analysis of the strongest Santa Ana wind event in the multimodel projection for the period September–November 2095. (A) Topographic context. (B and
C) 45-km resolution wind speed and specific humidity anomalies for the event date, relative to the September–November climatology (2095–2097). (D) Median
day of the year on which the top 5% of Santa Ana wildfire threat index (SAWTI) conditions were observed over Southern California during fall, calculated using
downscaled multimodel projections for 2025–2027 and 2095–2097. Bottom: Downscaled SAWTI from the target WRF (E), R2-D2 (F ), STAR-ESDM (G), and BCSD
(H). Quiver plots represent 10 m wind magnitude and direction, and dashed contours indicate the 1,200 m isohypse of the mountain ranges.
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fall SAWTI conditions in Southern California, as projected by
different downscaling methods. These conditions are shown for
downscaled climate projections of the near future (2025–2027)
and the late 21st century (2095–2097). Specifically, the timing
is estimated by calculating the median day of the year for the top
5% of SAWTI conditions during the fall months (September–
November) in each climate projection. The 45-km (Interp.) and
9-km (Target) WRF simulations both predict a similar shift of
strong Santa Ana wind events toward later in the year with climate
change, consistent with previous studies (65). However, the 9-km
WRF simulations forecast peak Santa Ana wind conditions a few
weeks later in the season, highlighting the impact of fine-scale
processes on compound climate risks (4). These processes are not
fully captured by BCSD and STAR-ESDM. In contrast, R2-D2
captures both the timing and the shift in Santa Ana wind events
projected by dynamical downscaling.

Finally, another benefit of R2-D2 is its ability to assess the
extent to which the strong wildfire conditions are determined by
the coarse-resolution context. This can be analyzed in terms of the
spread of the generative samples conditioned on the same coarse-
resolution fields. In this particular case, the SAWTI conditions
were tightly controlled by the coarse-resolution input, resulting
in low variability in the generated samples and high confidence
in severe wildfire risk. Additional samples supporting this tight
large-scale control are included in SI Appendix, along with an
analysis of the spread of the generative samples, which typically
accounts for more than 70% of the downscaling error. More gen-
erally, the dynamical-generative framework provides estimates of
the internal variability of downscaled fields given a large-scale
context, which can be leveraged to construct counterfactuals and
study the drivers of regional extremes (66, 67).

Discussion

Dynamical-generative downscaling combines the physical basis
of dynamical downscaling with the sampling efficiency of
diffusion models to provide regional climate projections that
capture the full range of scenarios projected by existing ESMs.
Dynamically downscaling coarse climate data from a wide range
of ESMs to an intermediate resolution yields fields that are
physically consistent with the RCM. This greatly simplifies the
learning task of the generative model, by reducing the spectrum
of conditioning inputs to those consistent with the dynamics of
the RCM. The initial dynamical projection also creates a stable
basis for incorporating high-resolution details, which facilitates
residual learning.

These characteristics are exploited by the diffusion model
in the generative stage, which can be trained on dynamically
downscaled data from a single ESM to construct an efficient
probabilistic sampler of high-resolution meteorological fields.
The sampled fields display realistic spectra, extremal proper-
ties, and capture the multivariate uncertainty inherent in the
downscaling process. Capturing spatial and field correlations
maximizes the added value of the high-resolution projections by
enabling downstream users to derive their own relevant climate
indicators without loss of accuracy. Quantile-based methods
such as BCSD do not capture these correlations, which can
lead to the underestimation of compound risks (67, 68). Even
in the case of univariate climate distributions, the generative
R2-D2 model outperforms statistical downscaling methods such
as BCSD and STAR-ESDM in downscaling skill. In addition,
downscaled climate risk assessments with the proposed frame-
work capture the uncertainty underlying climate projections

better than dynamical downscaling of smaller ensembles, the
current paradigm.

The dynamical-generative framework can be designed to be
substantially more economical than pure dynamical downscaling,
facilitating its application to very large climate model ensembles.
In this study, the generative stage substitutes a component that
consumes roughly 97.5% of the total computational budget in
the original system. We document the use of the framework to
downscale an ensemble of 8 ESMs. In this case, our method
saves 85% of the dynamical downscaling cost, or 97.5% of the
cost of 7 out of the 8 ESMs—a percentage that would increase
for larger climate model ensembles. Inference with the diffusion
model is relatively cheap: using a batch size of 32 samples on
16 NVIDIA A100 GPUs, the throughput exceeds 800 samples
per hour. Moreover, the generative stage can sample downscaled
fields without an initial spin-up time, which further boosts its
efficiency compared to physics-based downscaling.

As previously demonstrated in weather forecasting (35),
diffusion models can be used in conjunction with dynamical
models of the atmosphere to reduce the cost of ensemble
projections and augment the added value of the entire system. In
the case of climate downscaling, this enables downscaling much
larger climate model ensembles than those currently afforded by
the dynamical downscaling paradigm (5, 25). This is essential to
capture the regional impacts of climate change as projected by
current state-of-the-art climate models.

Materials and Methods
Data for Learning and Evaluation. We derive our input and output data from
the WUS-D3 dataset (41). WUS-D3 employs WRF to dynamically downscale
global climate projections to an intermediate resolution of 45 km over a region
covering the entire western United States, and extensions into the Midwest,
the Pacific, western Canada, and northern Mexico, and shown in the center
panel of Fig. 1. The 45 km WRF simulations are driven by 6-hourly lateral
boundary conditions. They are also nudged toward the large-scale (>1,500
km) conditions of the forcing ESM with a relaxation timescale of 1.08 h. The
45 km grid is subsequently dynamically downscaled to 9 km resolution over
the Western Electricity Coordinating Council US coverage area shown in the
rightmost panel of Fig. 1, using 6-hourly lateral boundary conditions from the
45 km grid. In this study, we focus on the time-aligned hourly data available
from both the coarse and high-resolution grids.

The data used for evaluation come from future climate projections under
the SSP3-7.0 scenario using 8 different ESMs: CanESM5 (45), EC-Earth3-Veg
(64), UKESM1-0-LL (69), MIROC6 (70), ACCESS-CM2 (71), MPI-ESM1-2-HR (72),
NorESM2-MM (73), and TaiESM1 (74). The output of each ESM is debiased using
the historical biases with respect to the ERA5 reanalysis (75) as a reference, prior
to being used as input to WRF (17). In addition, sea surface temperatures in the
Gulf of California are corrected to reflect its observed distribution, unresolved
by most ESMs. This correction, as well as the resolution and specific climate
projections used, are detailed in depth in the WUS-D3 description paper (41).

We train a probabilistic diffusion model to conditionally sample hourly
snapshots of the meteorological field differences between the 9 km and 45 km
resolution simulations. This difference is computed on the 9 km grid, after cubic
interpolation of the 45 km resolution data to the 9 km grid. The generative model
is conditioned on time-aligned and spatially interpolated 45 km meteorological
fields, as well as static information about the 9 km grid. Therefore, all inputs and
outputs cover the spatial grid with 340× 270 degrees of freedom depicted in
Fig. 1. The inputs and outputs of the model are shown in Table 1. Only spatial
downscaling is considered, not time upsampling. To facilitate training, each
input and output field is centered and normalized using its temporal and spatial
mean and SD in the training set. Further details of our modeling framework are
included in SI Appendix.

Given a forcing model used for training the generative model (CanESM5
in the main text), the period 2014–2094 is used for training, 2098–2100 for
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validation, and 2095–2097 for testing. SI Appendix analyzes the climate change
generalization of R2-D2 models trained on shorter time periods. Since the
generative model only sees one ESM during training and evaluation, all other
models used in the evaluation of the framework are part of the test set.

Generative Model Design and Training. The R2-D2 model is a conditional
score-based diffusion model (76) for generative downscaling, with the training
objective of denoising score matching (77). We adopt the denoising formulation
introduced by Karras et al. (78) with a variance-exploding noise schedule. The
denoiser is parameterized by a UNet-type convolutional architecture with about
180 million trainable parameters. The diffusion configuration and neural net-
work architecture are described in detail inSIAppendix. Studies on the sensitivity
of model performance to input selection, output selection, learning task, and
climate change shifts between training and testing are also included therein.

We train and sample from the R2-D2 model using classifier-free guidance
(79), with guidance strength ofg = 0.2 and masking the conditioning input with
probability pu = 0.1 during training. We also employ a dropout probability
pd = 0.1 for the model weights during training. The diffusion model is
trained using the Adam optimizer with a batch size of 128 for 2 · 105 steps,
and exponential moving average decay of 0.9999. The learning rate schedule
consists of cosine decay after an initial linear ramp-up, with a peak learning rate
of 2 · 10−4 and a terminal value of 1 · 10−6. Training of the model takes about
5.5 d using 16 NVIDIA A100 GPUs.

Baselines. Dynamical-generative downscaling is evaluated against four base-
lines: cubic interpolation, BCSD, STAR-ESDM, and dynamically downscaled
subensembles. Cubic interpolation outputs meteorological fields from the 45 km
grid interpolated to the 9 km grid. In terms of the residual modeling approach
used in our generative stage, cubic interpolation represents the null or zero
residual output. BCSD follows a time-aligned implementation without temporal
disaggregation, since inputs and outputs are aligned in our setting (48). The
debiasing step is performed by quantile-mapping the coarse-resolution fields
using as a reference the climatology of the low-pass filtered high-resolution fields
over the dates and forcing model in the training dataset. Spatial disaggregation is
then performed by retaining the debiased climatological anomalies and substi-
tuting the climatological mean by the high-resolution climatological mean. The
retainedclimatologicalanomaliesareadditiveforallvariables,withtheexception
of precipitation, for which the multiplicative anomalies are retained (46).

STAR-ESDM decomposes input climate fields into three components with
distinct timescales: a long-term trend, a slowly changing climatology, and a
weather anomaly (49). Following this decomposition, the output of the method
is the sum of three terms: the long-term third-order trend of the low-resolution
data, debiased with respect to the high-resolution training data; the detrended
climatological mean of the high-resolution training data, after a climate change
adjustment inferred from changes in the coarse-resolution data climatology; and
thequantile-mappedanomalyof the inputdata,alsoadjustedforclimatechange.
The final baseline is a proxy for dynamical downscaling under computational
constraints, which limits the number of ESMs that can be downscaled. We
consider 4-member subensembles containing CanESM5 and three other ESMs.
Four different subensembles are evaluated, such that all ESMs are used at least
once in the analysis. This reduces the effect of model selection on the final
results. The reported metrics for this baseline are the average metrics over the
four subensembles.

Data, Materials, and Software Availability. Source code for our models,
evaluation protocols, and tutorial notebooks are available on GitHub
(https://github.com/google-research/swirl-dynamics/tree/main/swirl_dynamic
s/projects/probabilistic_diffusion/downscaling/gcm_wrf) (80). Pretrained mo-
del weights, as well as evaluation datasets, are available on Google Cloud
(https://console.cloud.google.com/storage/browser/dynamical_generative_do
wnscaling) (81). Previously published data were used for this work (WUS-D3
data were used for training and evaluation, described at https://doi.org/10.
5194/gmd-17-2265-2024) (41).
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