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ABSTRACT: Clouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The magnitude of
the shortwave reflection by clouds depends on their location, optical properties, and three-dimensional (3D) structure.
Due to computational limitations, Earth system models are unable to perform 3D radiative transfer calculations. Instead
they make assumptions, including the independent column approximation (ICA), that neglect effects of 3D cloud morphol-
ogy on albedo. We show how the resulting radiative flux bias (ICA-3D) depends on cloud morphology and solar zenith
angle. We use high-resolution (20–100-m horizontal resolution) large-eddy simulations to produce realistic 3D cloud fields
covering three dominant regimes of low-latitude clouds: shallow cumulus, marine stratocumulus, and deep convective
cumulonimbus. A Monte Carlo code is used to run 3D and ICA broadband radiative transfer calculations; we calculate the
top-of-atmosphere (TOA) reflected flux and surface irradiance biases as functions of solar zenith angle for these three
cloud regimes. Finally, we use satellite observations of cloud water path (CWP) climatology, and the robust correlation
between CWP and TOA flux bias in our LES sample, to roughly estimate the impact of neglecting 3D cloud radiative
effects on a global scale. We find that the flux bias is largest at small zenith angles and for deeper clouds, while the albedo
bias is most prominent for large zenith angles. In the tropics, the annual-mean shortwave radiative flux bias is estimated to
be 3.16 1.6 W m22, reaching as much as 6.5 W m22 locally.

SIGNIFICANCE STATEMENT: Clouds cool Earth by reflecting sunlight back to space. The amount of reflection is
determined by their location, details of their 3D structure, and the droplets or ice crystals they are composed of. Global
models cannot simulate the 3D structure of clouds because computational power is limited, so they approximate that
clouds only scatter sunlight in a 1D vertical column. In this study, we use local models to directly simulate how clouds
scatter sunlight in 3D and compare with a 1D approximation. We find the largest bias for overhead sun and for deeper
clouds. Using satellite observations of bulk cloud properties, we estimate the tropical annual-mean bias introduced by
the 1D approximation to be 3.16 1.6 W m22.
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1. Introduction

Earth’s average albedo is roughly 29%, with clouds
accounting for about half of the solar radiative energy fluxes
reflected back to space (Stephens et al. 2015). Accurately sim-
ulating clouds is crucial for modeling Earth’s albedo. How-
ever, Earth system models (ESMs) struggle to accurately
represent the albedo’s magnitude, spatial patterns, and sea-
sonal variability (Bender et al. 2006; Voigt et al. 2013;
Engstr€om et al. 2015). Simulating clouds is difficult for several
reasons, but one major factor is their wide range of spatial
scales. Clouds have complex three-dimensional (3D) mor-
phologies created by turbulent motions at length scales down
to tens of meters or smaller. However, the typical resolution
of an ESM is around only 10–100 km in the horizontal and
100–200 m in the vertical in the lower troposphere (Schneider
et al. 2017). This discrepancy means that clouds are not

explicitly resolved in ESMs. Instead, they are represented by
parameterizations and, for purposes of radiative transfer
(RT) calculations, are approximated as broken plane-parallel
structures within grid cells (Marshak and Davis 2005).

The plane-parallel approximation (PPA) leads to important
biases in RT calculations (Cahalan and Wiscombe 1992).
Over the past 20 years, RT solvers have made significant pro-
gress in reducing some of these biases, either by making use
of semiempirical deterministic parameterizations of cloud het-
erogeneity (Shonk and Hogan 2008) or through stochastic
sampling of plane-parallel cloudy columns based on assumed
distributions and characteristics of cloud structural properties
(Pincus et al. 2003). These approximate solvers are likely to
become even more accurate in the future, as dynamical
parameterizations provide increasingly detailed cloud statis-
tics (e.g., Cohen et al. 2020). Moreover, the PPA bias may be
reduced in ESMs by using embedded cloud-resolving models
(Cole et al. 2005b; Kooperman et al. 2016), albeit at great
additional computational expense, in an approach known as
cloud superparameterization (Khairoutdinov and Randall
2001).

This progress has led to a renewed interest in another
source of bias that was, until recently, overshadowed by biases
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due to the PPA: the treatment of horizontal radiative fluxes in
ESMs (Cahalan et al. 1994; Sch€afer et al. 2016; Hogan et al.
2019). ESMs make the independent column approximation
(ICA) when performing RT calculations. This approximation
neglects horizontal radiative fluxes, decoupling the RT calcu-
lation between atmospheric columns to make the problem
computationally tractable. Three-dimensional radiative trans-
fer will remain too expensive to run in ESMs in the foresee-
able future, making the ICA a necessary simplification
(Hogan and Bozzo 2018). For this reason, it is important to
quantify and document biases due to the ICA.

In this context, the effect of cloud structure on horizontal
radiative transfer has gained attention, enabled by advances in
computation that make 3D RT feasible at high spectral resolu-
tion (Mayer and Kylling 2005; Emde et al. 2016; Villefranque
et al. 2019; Gristey et al. 2020; Veerman et al. 2020). The struc-
tural differences between ICA and a full 3D RT calculation
have been documented before (Marshak et al. 1995b; O’Hirok
and Gautier 1998, 2005; Barker et al. 2003, 2012), and many
alternatives to ICA have been proposed to minimize their mis-
match (e.g., Marshak et al. 1995a; V�arnai and Davies 1999;
Frame et al. 2009; Hogan and Shonk 2013; Wissmeier et al.
2013; Okata et al. 2017; Oreopoulos and Barker 1999; Klinger
and Mayer 2016, 2020; Hogan et al. 2019).

Nevertheless, most studies have been focused on theoreti-
cal cases, small spatial and temporal domains, or improving
satellite retrieval algorithms. Some notable exceptions are
Cole et al. (2005a), who calculate the ICA bias from two-
dimensional (2D) RT in a superparameterized cloud resolving
model at 4-km horizontal resolution, and Barker et al. (2015,
2016), who calculate the ICA bias using 2D cloud fields
retrieved from CloudSat and CALIPSO.

Here we discuss the magnitude of the bias that results from
neglecting the 3D cloud radiative effects by making the ICA.
We use large-eddy simulations (LES) to generate 3D cloud
fields representing three canonical cloud regimes: shallow
cumulus convection, stratocumulus, and deep convection.
These cloud regimes are representative of the clouds typically
found in the tropics. Previous studies that quantify 3D cloud
radiative effects globally have used 2D cloud fields retrieved
from satellites or superparameterized models, or inferred 3D
fields using some stochastic generator (O’Hirok and Gautier
1998, 2005; Barker et al. 2015, 2016). These approaches can
better represent the spatial distribution of cloud types but are
restricted to the coarse resolution of satellite footprints or
rely on assumptions to generate 3D fields. We instead use
high-fidelity models to generate realistic 3D cloud fields at
very high resolution, sacrificing some ability to generalize
beyond the tropics from our limited number of LES cases. All
of these methods present different challenges, either in gener-
alizing to global scales, or in representing the details of small
scales, but the simplifications are necessary because 3D cloud
retrievals from satellite are not yet available. However, recent
progress in stereoscopic observations is bringing us closer to
having global high-resolution observations of 3D cloud struc-
ture (e.g., Romps and €Oktem 2018; Castro et al. 2020).

We calculate the bias between the true reflected flux and
the flux approximated by ICA using a Monte Carlo RT code.

The shortwave radiative flux bias is shown to vary with solar
zenith angle and cloud type. Because the solar zenith angle
varies with the diurnal and seasonal cycle, we quantify the
effect of the 3D bias on these time scales. Finally, using global
satellite observations of cloud climatology, we estimate the
spatiotemporal bias that would result in global models that
resolve clouds but still make the ICA. As stated earlier, most
ESMs make the ICA and use some cloud heterogeneity
parameterization to reduce the PPA bias, so the bias associ-
ated with only the ICA is an underestimate of the total bias.
Because of the diversity of assumptions made by global mod-
els to account for phenomena such as cloud overlap, and the
fundamental resolution dependence of cloud heterogeneity
emulators, in this study we focus on the bias resulting from
RT using only the ICA on fully resolved 3D cloud structures
from LES.

2. Methods

a. Large-eddy simulations of clouds

We generate three-dimensional cloud fields from high-reso-
lution LES using the anelastic solver PyCLES (Python Cloud
Large Eddy Simulation; Pressel et al. 2015, 2017). The LES
are run in three dynamical regimes to simulate shallow cumu-
lus (ShCu), stratocumulus (Sc), and deep-convective cumulo-
nimbus clouds (Cb). Figure 1 shows volume renderings of
each cloud regime alongside profiles of cloud fraction; key
properties of the different cloud regime simulations can be
found in Table 1 with more details in appendix A. In general,
LES are capable of reproducing observed cloud characteris-
tics (e.g., cloud cover, liquid water path, cloud depth) includ-
ing aspects of 3D structures (Griewank et al. 2020).

ShCu clouds are convective clouds with typical cloud cover
of 10%–20% and cloud-top height (CTH) around 2 km. They
occur frequently over tropical oceans, covering 20% on
average but up to 40% of their surface (Cesana et al. 2019). In
this study, ShCu are represented by two LES case studies,
Barbados Oceanographic and Meteorological Experiment
(BOMEX) and Rain in Cumulus over the Ocean (RICO),
which represent nonprecipitating and precipitating shallow
convection over tropical oceans, respectively (Siebesma et al.
2003; vanZanten et al. 2011). Sc clouds are shallower, with
CTH only around 1 km. They have near 100% cloud cover
and typically blanket subtropical oceans off the west coast of
continents (Cesana et al. 2019). Sc are represented by the Sec-
ond Dynamics and Chemistry of Marine Stratocumulus field
study (DYCOMS-II) RF01 LES case of a Sc deck off the
coast of California (Stevens et al. 2005). Cb clouds are deep
convective thunderstorm clouds that occur frequently over
midlatitude continents in summer and in the tropics, e.g., in
the intertropical convergence zone (ITCZ). Their CTH can
reach up to 15 km or higher, they often contain ice, and anvils
at the top contribute to a cloud cover around 30%. Cb clouds
are represented in this paper by the TRMM Large Scale Bio-
sphere–Atmosphere Experiment in Amazonia (TRMM-
LBA) LES case, based on measurements of convection over
land in the Amazon (Grabowski et al. 2006).
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An ensemble of snapshots is used to estimate the mean and var-
iance of the bias for each cloud type. The snapshots are chosen to
be at least one convective turnover time apart (1 h for BOMEX
and RICO, 30 min for DYCOMS-II RF01, and 90 min for
TRMM-LBA). For ShCu and Sc, we take snapshots evenly spaced
in time starting once the simulation has reached a statistically
quasi-steady state, after an initial spinup period. For the Cb case
we take snapshots from an initial-condition ensemble at several
time points representative of transient and fully developed deep
convection at 4, 5.5, and 7 h into the simulation (1000, 1130, and
1300 local time). We also analyze the effect of convective aggrega-
tion in Cb (Jeevanjee and Romps 2013; Wing et al. 2017; Patrizio
and Randall 2019) by analyzing snapshots from an initial-condition
ensemble run over a larger domain [(40 km)2, compared to the
original (20 km)2]. In both cases, we use only the snapshots at
1300 local time of fully developed deep convection, characterized
by stable liquid and ice water paths, for the cloud-type specific cal-
culations. The rest of the snapshots are used in our estimate of the
tropical shortwave flux bias. We choose ensemble sizes that

capture the natural variability of morphology in each LES case: 20
for ShCu (10 each of BOMEX and RICO) and 5 for Sc; for Cb
we take 15 snapshots from each time point (45 in total) from the
(20 km)2 TRMM-LBA simulations and 5 snapshots of fully devel-
oped, more aggregated deep convection from the (40 km)2

TRMM-LBA aggregated (agg.) simulations. The smaller ensem-
ble is determined to sufficiently capture the dynamical variability
for the larger domain.

The increase in convective aggregation for the larger domain
Cb simulations can be seen in typical measures such as the vari-
ance of the column relative humidity or total precipitable water
(Wing et al. 2017) (see appendix A, Fig. A1). The domain-
mean cloud cover, cloud top height, and cloud water path from
the two sets of Cb simulations are similar, indicating that the
difference in radiative flux bias is being driven by a change in
the aggregation or domain size. Larger domains may lead to
even more aggregation (Patrizio and Randall 2019); however,
synoptic noise may become important and disrupt the self-
aggregation of convection on large scales in reality (Bretherton

FIG. 1. Snapshots of LES clouds, showing liquid water specific humidity (gray to white, low to high) and ice water specific humidity (red
to white, low to high). Subplots to the right show vertical profiles of cloud fraction for each case. The thick line shows the profile for the spe-
cific snapshot in the 3D rendering, the thin lines show all other snapshots, and the shading shows the range. (a),(b) Shallow convective
clouds. (c) Stratocumulus clouds. (d) Deep convective clouds. Note that the domain sizes vary between the cases.

TABLE 1. LES case properties: name, type of cloud (shallow cumulus: ShCu; stratocumulus: Sc; deep convective cumulonimbus:
Cb), domain size, resolution, cloud cover, in-cloud cloud water path (CWP), cloud-top height (CTH), and thermodynamic phase.
Shown are ensemble means and standard deviations not accounting for spatial variance within a single ensemble member.

LES case name Cloud type Domain size (km3) Resolution (m3) Cloud cover CWP (g m22) CTH (km) Cloud phase

BOMEX ShCu 6.4 3 6.4 3 3 20 3 20 3 20 0.22 6 0.03 44.6 6 7.8 1.72 6 0.08 Liquid
RICO ShCu 12.8 3 12.8 3 6 40 3 40 3 40 0.25 6 0.01 90 6 20 2.28 6 0.18 Liquid
DYCOMS II RF01 Sc 3.36 3 3.36 3 1.5 35 3 35 3 5 0.996 6 0.002 53.8 6 0.7 0.911 6 0.004 Liquid
TRMM-LBA, t 5 4 h Cb 20 3 20 3 22 100 3 100 3 50 0.35 6 0.01 280 6 20 6.4 6 0.5 Liquid/ice
TRMM-LBA, t 5 5.5 h Cb 20 3 20 3 22 100 3 100 3 50 0.33 6 0.02 380 6 60 9.4 6 1.5 Liquid/ice
TRMM-LBA, t 5 7 h Cb 20 3 20 3 22 100 3 100 3 50 0.32 6 0.06 290 6 80 10 6 2 Liquid/ice
TRMM-LBA agg. Cb 40 3 40 3 22 100 3 100 3 50 0.30 6 0.02 360 6 80 12.2 6 0.6 Liquid/ice
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and Khairoutdinov 2015). The Sc and ShCu results are
unchanged for larger domain sizes (not shown), but we do see
an expected reduction in variance across the ShCu ensemble
due to the larger dynamical variability captured in each snap-
shot of the larger domain.

b. Radiative transfer computations

The RT calculations were done using the libRadtran software
package with the MYSTIC Monte Carlo solver (Mayer and Kyl-
ling 2005; Mayer 2009; Emde et al. 2016). Details of the setup can
be found in appendix B. TheMYSTIC solver requires 3D fields of
liquid and ice water content and particle effective radius as input.
We use MYSTIC to do the full 3D RT and ICA calculations. The
LES uses simple microphysics schemes that do not explicitly com-
pute the effective radius. To compute the effective radius, we fol-
low the parameterization from Ackerman et al. (2009) and
Blossey et al. (2013) for liquid and Wyser (1998) for ice (appendix
B). For the RT calculation, MYSTIC finds the scattering phase
function from precomputed lookup tables. In the case of liquid
droplets, which are assumed spherical, the full Mie phase function
is used. For the case of ice clouds, a parameterization of the habit-
dependent scattering must be used. We use the hey parameteriza-
tion with “general habit mixture” (Yang et al. 2013; Emde et al.
2016). The results are insensitive to the choice of ice parameteriza-
tion (Fig. B1) because the reflected flux signal is dominated by the
liquid droplets for the clouds we simulated.

c. Observations of cloud climatology

The LES cloud fields allow for precise calculation of the 3D
cloud radiative effect on small domains. To estimate the global
impact of the 3D cloud radiative effect, we use the results from
LES along with satellite observations of cloud climatology and
surface albedo to scale up from these few cases to a global pic-
ture. We find that in-cloud cloud water path (CWP), defined as
the domain-mean cloud water path divided by cloud cover, is a
simple but robust predictor of the flux bias (will be shown in sec-
tion 5). We use the International Satellite Cloud Climatology
Project (ISCCP) D2 dataset of CWP (Rossow et al. 1999; Ros-
sow and Duenas 2004; Marchand et al. 2010; Stubenrauch et al.
2012, 2013). The ISCCP D2 cloud product is a monthly climato-
logical mean with spatial resolution of 1� 3 1� constructed from
measurements during the period 1984–2007. These data are col-
lected by a suite of weather satellites that are combined into a 3-
hourly global gridded product at the D1 level and are averaged,
including a mean diurnal cycle, into the D2 product we use.

We also account for the observed surface albedo that varies sea-
sonally and spatially and affects the flux bias. We use observations
of surface albedo from the Global Energy and Water Exchanges
Project’s surface radiation budget product version 3.0, which is
aggregated to a monthly mean climatology for the period
1984–2007 and gridded to 1� 3 1�.

3. Radiative flux bias dependence on zenith angle

a. Top-of-atmosphere

The top-of-atmosphere (TOA) radiative flux bias is mea-
sured (in W m22) as the difference in reflected irradiance

between the ICA and 3D RT calculations averaged over the
full domain. A positive bias means that, under the ICA,
clouds reflect more energy back to space than in reality (i.e.,
3D), implying that Earth’s surface is artificially dimmed
(cooled) in a model that uses the ICA. The albedo bias (Da)
is computed as the flux bias (DF 5 FICA 2 F3D) divided by
the total incoming solar flux (Fin),

Da5
DF
Fin

3 100%: (1)

Figure 2 shows the flux and albedo biases (ICA–3D) for the
five cases of ShCu, Sc, and Cb clouds. The solid lines show the
ensemble mean bias, and the shading denotes one standard
deviation (s). The combined variance (s2) is computed as

s2 5
1

NLES

XNLES

i 5 1

s2
i,ICA 1s2

i,3D

� �
1
�
DFi 2 hDFi

�2
� �

, (2)

whereNLES is the number of ensemble members, si,ICA and si,3D

are the standard deviations from the MYSTIC solver photon
tracing, DFi is the TOA flux bias of each ensemble member, and
h�i denotes a mean over the LES ensemble. This variance
includes both the statistical noise from the Monte Carlo RT and

FIG. 2. Bias (ICA-3D) in (a) TOA reflected flux and (b) albedo
as a function of zenith angle for ShCu (BOMEX and RICO), Sc
(DYCOMS-II RF01), and Cb (TRMM-LBA and TRMM-LBA
agg.). For each cloud type, average fluxes (with shaded 1s error
bars) are computed over the individual snapshots. Positive bias
means the ICA approximation is reflecting more incoming flux than
in the 3D RT calculation.
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the dynamical variability of the cloud field (which are assumed to
be uncorrelated). The Monte Carlo noise is proportional to
1=

ffiffiffi
n

p
where n 5 104 is the number of photons used for the RT

simulation, and is in fact �0.7% for these calculations. The vari-
ance between cloud scenes is much larger than the Monte Carlo
error, by more than an order of magnitude.

Sc show negligible deviation between ICA and 3D reflected
fluxes. For convective clouds (ShCu and Cb), the bias from
the ICA is positive, except for ShCu at very large solar zenith
angles. At large zenith angles, ShCu show a large negative
flux and albedo bias for ICA. ShCu scatter far fewer photons
than Cb due to the low cloud cover and their smaller optical
thickness, corresponding to small vertical extent. Cb exhibit
the largest reflected irradiance and also the largest bias
between the ICA and 3D RT calculations. While the mean
flux bias is similar, the structure of the bias with zenith angle
is markedly different for the two domain sizes (Fig. 2). For
the small-domain simulations with a lesser degree of aggrega-
tion, the bias is approximately linear with zenith angle (as
seen by Barker et al. 2015, 2016). For the more aggregated
case, the flux bias is nearly uniform up until a solar zenith
angle of 60� and then decreases rapidly toward zero; this
translates to an albedo bias that peaks at large zenith angles
(around 70�).

The convective clouds show much more variation than the
stratiform clouds between snapshots due to the variability in
cloud cover even in a statistically steady state. The less aggre-
gated Cb clouds have the largest variability, which is expected
since the domain size is small relative to the scale of the
clouds, i.e., in each snapshot we capture only approximately
one deep convective cloud, compared to many small cumulus
clouds; therefore, we are effectively averaging over fewer
realizations even though we take our ensemble size to be
larger. Similarly, for the more aggregated Cb clouds, since we
use a 4-times-larger domain, a smaller ensemble (NLES 5 5
compared to 15) is large enough to capture the variability.

In the ICA, the horizontal photon fluxes between neighbor-
ing columns are ignored. For the Sc clouds that uniformly
cover the whole domain (Fig. 1c), this assumption has little
effect: the flux bias is near zero for all zenith angles. However,
for cumulus clouds, making the ICA has two effects that are
described in detail by Hogan et al. (2019).

1) The long-recognized “cloud-side illumination” effect in
3D radiative transfer. This describes how horizontally
propagating photons can encounter the side of a cloud
and can be scattered by it, rather than being restricted to
hit the top of a cloud in the ICA. Side illumination hap-
pens when photons travel across columns at slant angles,
brightening the cloud sides and enhancing cloud reflec-
tance; it also creates larger shadows, or larger effective
cloud cover. This effect acts to enhance reflectance in 3D,
and thus would appear as a negative ICA flux bias in our
terminology.

2) The newer “entrapment” effect that Hogan et al. (2019)
presented. This mechanism is similar to the “upward
trapping” mechanism discussed by V�arnai and Davies
(1999). It describes how in 3D a scattered photon may be

intercepted by another cloud, or the same cloud, in a dif-
ferent column higher in the domain and scattered back
down to the surface. In the ICA by contrast, when a pho-
ton travels through clear sky and is scattered by a cloud, it
will necessarily travel back through the same column of
clear sky to the TOA. The entrapment mechanism acts to
decrease cloud reflectance in 3D, i.e., it creates a positive
flux bias.

The calculated 3D effects we show in Fig. 2 are a combina-
tion of these competing mechanisms. At large solar zenith
angles, cloud shadowing, by which clouds can shade each
other, clear-sky regions, and the surface when photons are
coming in at slant angles, can be important for surface irradi-
ance and surface fluxes (Frame et al. 2009; Veerman et al.
2020).

For small zenith angles, when the sun is overhead, the
convective clouds (ShCu and Cb) produce a positive flux
bias because entrapment is dominant over cloud-side illumi-
nation. For large zenith angles, the flux and albedo bias
from ShCu is negative because cloud-side illumination
becomes the dominant effect. In the mean, the solar zenith
angle at which the flux bias becomes negative is around 70�,
but for the individual ensemble members this ranges from
around 45� to 75�. This has been seen before for ShCu by
Barker et al. (2015, 2016) and Hogan et al. (2019). For Cb
clouds, however, even at large zenith angles, the flux and
albedo biases remain positive, indicating that the entrap-
ment mechanism continues to dominate over cloud-side illu-
mination. This is not the case for every scene in the Cb
ensemble, but it is true in the mean, in agreement with the
results from Hogan et al. (2019). This difference between
ShCu and Cb is related to the aspect ratio of the clouds; the
cloud-side illumination mechanism can only become domi-
nant if the aspect ratio is small (clouds are not too deep).
Furthermore, in the case of the more aggregated Cb clouds,
a greater degree of aggregation decreases the surface area
to volume ratio of the clouds, or what Sch€afer et al. (2016)
call the length of cloud edge, or cloud perimeter. A smaller
cloud perimeter will decrease the cloud side illumination as
well as the entrapment efficiency of the cloud (Hogan et al.
2019). The uncertainty in flux bias due to the degree of
aggregation of deep convection is much larger than the
spread across the LES ensemble and represents a structural
uncertainty, which is more challenging to quantify.

These 3D cloud effects can be understood from Fig. 1,
which shows illustrations of the clouds from the four LES
cases. The scattered cumulus in the BOMEX and RICO
cases are shallow and spaced apart, which allows for cloud-
side illumination at large zenith angles to dominate over the
entrapment mechanism. The DYCOMS-II RF01 stratocu-
mulus clouds are quite horizontally homogeneous over this
small domain, therefore, ICA biases are small. As discussed
in Hogan et al. (2019), when in-cloud heterogeneity is
larger, e.g., for open-celled marine stratocumulus, the
entrapment effect is larger. Finally, for the deep TRMM-
LBA clouds, the entrapment mechanism remains dominant
even for large zenith angles because the clouds at higher
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levels can intercept and trap outgoing photons that are able
to escape to TOA in the ICA.

In addition to the LES ensembles described previously, we
run one additional set of tests to quantify the dependence of
the flux bias calculations on the LES resolution (Fig. 3). We
take the original LES and systematically coarse-grain the 3D
fields to lower resolution. Doing so ensures that we do not
change the dynamics of the clouds so that we can test the
effect of resolution on only the radiative transfer. We are not
able to bridge the gap all the way to ESM scales (10–100-km
horizontal resolutions) due to computational limits on run-
ning the LES, but we show results across a range of horizontal
scales. When coarse-graining, we keep the vertical resolution
fixed to better represent the very large aspect ratio grid boxes
found in ESMs compared to the relatively isotropic grid boxes
in LES. The mean TOA flux bias is nearly constant across res-
olutions for the shallow clouds (Sc and ShCu). For Cb, the
mean TOA flux bias decreases with larger grid spacing, as
expected, from around 17 W m22 at the original resolution
and down to 6 W m22 for 2-km horizontal resolution. Since
the bias does not asymptote as we move toward smaller hori-
zontal grid spacing, we expect that if the LES were run at
even higher resolutions, we would find an even larger bias
between the ICA and 3D. We conclude that our estimated
bias is a lower bound in this regard.

b. Surface

Using the same radiative transfer calculations, we also
quantify the bias in downwelling surface irradiance. This bias
as a function of solar zenith angle is shown for each cloud
type in Fig. 4. The total bias (Fig. 4a) is the sum of a direct
component and diffuse component, shown in Figs. 4b and 4c,
respectively. These components largely offset each other, as
has been found in previous studies (Gristey et al. 2020). The

direct surface irradiance bias is always positive and the diffuse
always negative, resulting from side illumination (shadowing)
and entrapment, respectively. Note that these two mecha-
nisms have opposite effects in the surface irradiance bias and
the TOA reflected flux bias.

For the total surface irradiance bias (Fig. 4), we observe a
similar pattern to the TOA bias (Fig. 2), except with the
opposite sign. This has been noted before (Barker et al.
2015), and is to be expected given that when the ICA produ-
ces anomalous extra TOA reflectance, it simultaneously
decreases the surface irradiance with respect to the 3D calcu-
lation. We can quantify this by considering in a simple way
how the TOA reflected flux and surface irradiance depend on

FIG. 3. Mean TOA reflected flux bias across all solar zenith
angles computed for different resolutions of the same cloud fields.
The horizontal axis shows the horizontal resolution; the vertical
resolution is kept fixed. The four cases of ShCu, Sc, and Cb are
shown in the same colors as Fig. 2. For each case, three snapshots
from the original ensemble are used and the spread is shown by the
shading.

FIG. 4. Surface irradiance bias (ICA-3D) as function of zenith
angle for ShCu (BOMEX and RICO), Sc (DYCOMS-II RF01),
and Cb (TRMM-LBA). (a) The total surface irradiance bias is split
into the (b) direct and (c) diffuse components, which largely com-
pensate each other, especially at larger zenith angles. For each
cloud type, average fluxes (with shaded 1s error bars) are com-
puted over the individual snapshots. Positive bias means the ICA
approximation has more downwelling radiation at the surface than
the 3D calculation.
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the incoming flux, surface albedo (as), cloud albedo (ac), and
cloud cover (fc). The total scene albedo stems from scattering
by the clouds and scattering by the surface. Considering up to
two scattering events, we can write

a5 fcac 1 12 fcð Þas 1 2fc 12 fcð Þ 12acð Þas:

The first term comes from reflection directly from the
clouds, the second from reflection directly from the surface,
and the third from reflection of diffuse radiation from the sur-
face. The albedo bias is therefore

Da5 fcDac 12 2as 12 fcð Þ½ �, (3)

where Da 5 aICA 2 a3D. From Eq. (3) we see that the albedo
bias will decrease with surface albedo because when the surface
accounts for a larger fraction of the total albedo the cloud bias
is less pronounced. For the downwelling surface irradiance (I),
we can do the same and consider up to two scattering events,

I5 12 fcð Þ1 fc 12acð Þ1 fc 12 fcð Þacas
� �

Fin,

where the first term comes from direct irradiance, the second
from forward scattering through the cloud, and the third from
multiple scattering first off the surface and then back down off
the cloud. To first order the surface irradiance does not depend
on the surface albedo, but including higher-order terms we see
that the surface irradiance increases with surface albedo. The
surface irradiance bias (DI5 IICA 2 I3D) can be written as

DI5 2 fcDac

h
12as 12 fcð Þ

i
Fin: (4)

Finally, with these approximations, and noting that DF 5

DaFin, we can relate the surface irradiance bias to the TOA
reflected flux bias by

DI5 2DF
12as 12 fcð Þ
12 2as 12 fcð Þ

� �
: (5)

Figure 5 shows the calculated surface irradiance bias com-
pared to the predicted bias calculated from the TOA bias via
Eq. (5). The relation between surface irradiance bias and
TOA reflected flux bias is robust and predictable, with an
r2 5 0.92. Equation (5) considers up to two scattering events,
but considering only one scattering event, which simplifies the
equation to DI 5 2DF, does not significantly change the qual-
ity of the prediction (r2 5 0.91 in this case).

While the surface irradiance bias is critically important for
surface fluxes, which may have dynamical feedbacks on the
clouds, or for impacts on vegetation and carbon uptake (Veer-
man et al. 2020), the relevant quantity for the overall climate
system energetics is the TOA energy balance. The remainder of
this paper is devoted to analyzing the TOA reflected flux bias
and the relevance of 3D cloud radiative effects for climate.

4. Seasonal cycle of radiative flux bias

The solar zenith angle varies over the course of the day
from sunrise to sunset, and therefore the dependence of the

bias on zenith angle manifests itself as a diurnally varying
bias. But the zenith angle also varies on seasonal time scales
for different latitudes.

To assess the climate impact of the ICA bias, we consider
the flux and albedo bias for each cloud type as a function of
day of year and latitude. This calculation is done by assuming
that the LES-generated cloud field is present at any given lati-
tude circle on any given day of the year. This exercise is done
without a claim to be realistic, but to demonstrate the impact
each cloud type might have on Earth given the spatiotemporal
variations of solar zenith angle. For any location and time,
including a diurnal cycle, the solar zenith angle is calculated
and the flux bias is estimated based on the results presented
in Fig. 2. The flux and albedo biases are computed hourly and
averaged to show the daily mean bias.

Figure 6 shows the annual mean and seasonal cycle of TOA
flux and albedo biases for each cloud type. To estimate the
uncertainties of the annual-mean bias, we calculate the LES
ensemble spread as follows. For each hour in the year and
each latitude, the solar zenith angle is calculated, and we inter-
polate between integer zenith angles in the flux bias calcula-
tions to find the mean flux bias. This is done individually for
each LES cloud scene in the ensemble. The ensemble mean
for each latitude and day of the year is shown (colored contour
plots in Fig. 6), as well as the annual mean of the ensemble
(black lines on Fig. 6). The spread across the ensemble in the
annual mean is shown as one standard deviation (gray shading
in Fig. 6).

Both ShCu cases show similar patterns of flux bias with lati-
tude and time (Figs. 6a,c). As seen in Fig. 2, these cases both
have a small positive bias for small solar zenith angles, transition-
ing to a small negative bias for larger zenith angles, which is man-
ifest here as a positive bias at low latitudes, transitioning to a
negative bias only in midlatitude winters. The albedo bias for
both ShCu cases is near zero in the tropics and becomes more
negative at higher latitudes (Figs. 6b,d). Sc show a very small flux

FIG. 5. Bias (ICA-3D) in surface irradiance as predicted by bias
in TOA reflected flux via Eq. (5) compared to the computed sur-
face irradiance bias. Cloud type and zenith angle are indicated by
marker shape and color, respectively. The 1:1 line is shown for
reference.
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FIG. 6. Daily mean bias (ICA-3D) as a function of latitude and day of year assuming the globe is covered by (a)–(d) ShCu
(BOMEX and RICO), (e),(f) Sc (DYCOMS-II RF01), (g),(h) Cb (TRMM-LBA), and (i),(j) more aggregated Cb (TRMM-LBA
agg.). (left) Flux bias; (right) albedo bias. Note the color scales vary between LES cases. Inset panels on the left show annual aver-
age biases with shaded error bars that denote the spread across the LES ensembles as described in the text. Only latitudes from
60�S to 60�N are shown because the simulated clouds are not representative of the high-latitude regions.
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(and albedo) bias for all solar zenith angles due to their high
cloud cover and horizontal homogeneity, but they do exhibit a
small positive flux bias (�0.2 W m22) during winter in midlati-
tudes (Fig. 6e). For Cb, the flux bias is comparatively large and
always positive (Fig. 2). In the less aggregated state, the flux bias
is nearly linear in zenith angle, which gives rise to a bias pattern
that roughly mimics the insolation pattern with latitude and day
of year (Fig. 6g). In the more aggregated state, the flux bias is
roughly constant in the tropics and overall larger than in the less
aggregated case (Fig. 6i). The albedo bias for Cb is largest and
positive during summer, though seasonal variations are less pro-
nounced for aggregated convection (Figs. 6h,j). In particular,
deep convective clouds are frequently found in the ITCZ, which
migrates with the insolation maxima and therefore results in a
tropical TOA reflected flux bias that peaks in each hemisphere
during their respective summers and is smallest during the shoul-
der seasons (Figs. 6g,i).

5. Implications for climate models

To assess the effect that 3D radiative transfer through cloud
fields has on climate simulated with ESMs, we must account
for the climatological occurrence of different cloud types in
space and time. A simple parameter that can account for

much of the flux bias variability in our LES ensemble is in-
cloud cloud water path (CWP), defined as domain-mean
cloud water path divided by cloud cover. By regressing the
flux bias against CWP for integer solar zenith angles between
0� and 90�, constraining the regression lines to pass through
the origin because there is no flux bias in clear-sky conditions
(CWP 5 0), we observe a robust positive correlation between
CWP and flux bias (Fig. 7). The best fit line and confidence
intervals are estimated with Gaussian process regression; we
use a dot product kernel, with the intercept constrained to
zero. We apply regularization by specifying the “nugget” (the
values added to the diagonal of the correlation matrix) as the
empirically calculated variance scaled by a constant factor.
The variance is calculated as the sample variance in a 100 g
m22 CWP interval around each point. The positive correla-
tion between CWP and flux bias, though not perfect, allows
us to approximate TOA flux biases using CWP on the global
scale. We choose CWP as our proxy for flux bias because it is
robustly observed by satellite and, among the other cloud
properties we explored (e.g., cloud top height, see appendix C
for details), the best predictor for flux bias (Fig. C1). Despite
the fact that the radiative flux bias certainly depends on more
than just CWP, we use it here as a first approximation to
model the flux bias.

FIG. 7. Scatterplot of in-cloud cloud water path (CWP) from LES domain against flux bias at zenith angles (a) 20�,
(b) 40�, (c) 60�, and (d) 80�. LES ensemble members are plotted with the same color convention as in Fig. 2. The
gray lines show the regression fit constrained to go through the origin. The gray shaded areas show the 68% and 95%
confidence intervals. The rms error of the regression is indicated at the top of each panel.
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Using this relationship between CWP and flux bias for a
series of zenith angles, we can take the observed climatologi-
cal CWPs from ISCCP to infer the resulting flux bias that
would be associated with using the ICA for RT calculations in
place of 3D RT. The monthly temporal resolution is not
inherently an issue for this analysis given that we use a linear
relationship between CWP and flux bias.

Additionally, we can account for spatial variations in sur-
face albedo. In the RT calculations previously shown, we
assume a constant surface albedo of aO 5 0.06, corresponding
to an ocean surface. The surface albedo affects the computed
TOA and surface flux biases as shown in Eqs. (3) and (4). The
albedo bias, written in Eq. (3), scales with the factor [1 2

2as(12 fc)]. We can therefore correct for the effect of the sur-
face albedo by multiplying our computed flux or albedo bias
by the ratio of the surface absorptions:

Dajas 5
12 2as 12 fcð Þ
12 2aO 12 fcð Þ

� �
Dajao : (6)

To test this scaling, we run additional RT calculations for
the convective cloud cases (BOMEX, RICO, and TRMM-
LBA) and vary the specified surface albedo from as 5

0.1–0.25 (spanning the range for subpolar land surfaces). Fig-
ure 8 shows the correlation between the predicted TOA
albedo bias using Eq. (6) and the explicitly calculated TOA
albedo bias. The prediction based on Eq. (6) is robust with an
r2 value of 0.94. For stratocumulus clouds, since the cloud
cover is nearly 1, the albedo bias depends very little on the
surface albedo and is not shown. We use Eq. (6) globally to
account for variations in the observed surface albedo without
the need to run additional RT calculations and interpolate
between discrete values.

To construct the annual-mean flux bias map shown in Fig.
9, we first calculated the solar zenith angle for each location
on Earth and each hour of the year. Then, we obtained the
flux bias given the observed CWP from the linear regression
at the given zenith angle (Fig. 7). Finally, we made a correc-
tion using Eq. (6), based on the ratio of the observed surface
absorption to the assumed ocean surface absorption used in
the MYSTIC RT calculations. The resulting flux bias is an
estimate of the bias that would be present in an ESM that is
able to resolve the relevant dynamical scales of clouds, but
makes the ICA during radiative transfer. This bias is smaller
than the bias present in current ESMs, which also contains
the biases due to PPA and cloud parameterizations, given
their very coarse horizontal resolution (Cole et al. 2005b).

We focus on the tropics (30�S–30�N, dotted box on Fig. 9),
where our estimation of flux bias based on the LES cases is
most robust and relevant; for higher latitudes, we do not cap-
ture all the relevant cloud regimes with our sample of LES
clouds, and so our flux bias estimate needs to be interpreted
with caution. Shown in the left inset plot is the zonal-mean
flux bias. The shading represents 1s error from the regression
of flux bias on CWP shown in Fig. 7 (as opposed to spatial or
temporal variability).

The largest bias occurs in the ITCZ region and the storm
track regions, especially over eastern Asia where the climato-
logical CWP is maximal (Fig. 9). It corresponds to locations
where the tallest clouds on Earth exist and where the mean
zenith angle is smallest. The region of maximum bias migrates
seasonally following the location of the ITCZ (and maximum
insolation). Seasonal variations in cloud cover and cloud type
are also manifest in the seasonal cycle of the 3D flux bias. In
the annual mean, the zonal-mean tropical flux bias is esti-
mated to be 3.1 6 1.6 W m22, and the maximum local flux
bias in the annual mean is around 6.5 W m22 (99th percen-
tile). The annual-mean, zonal-mean tropical albedo bias is
0.7%6 0.4% and is locally as large as 1.5% (99th percentile).

Our results are of the same order as those reported in Cole
et al. (2005a) and Barker et al. (2015, 2016). Cole et al.
(2005a) also found the largest flux bias occurring over the
ITCZ region, with a maximum bias of 5 W m22 and tropical
zonal-average bias of 1.5 W m22 during the boreal winter.
The larger value reported here is likely due to the fact that
Fig. 9 averages over the shoulder seasons and the regression
is based on higher-resolution cloud scenes, as quantified in
Figs. 3 and 6.

6. Summary and conclusions

In this paper we estimated the TOA flux and albedo biases
that result from neglecting 3D radiative transfer through
cloudy atmospheres. Although TOA shortwave radiative flux
biases in current ESMs are predominantly due to deficiencies
of subgrid-scale dynamical parameterizations that generate
cloud cover biases, as convection parameterizations improve
and model resolution increases, the relative contribution of
3D radiative effects to the total model error will increase. We
have quantified the radiative flux and albedo biases that result

FIG. 8. Predicted albedo bias from Eq. (6) compared to the com-
puted albedo bias for convective cloud scenes (BOMEX, RICO,
and TRMM-LBA) with different surface albedos. The predicted
surface albedo is calculated from the simulations using a surface
albedo of ao 5 0.06 corresponding to an ocean surface. Each point
represents the albedo bias at integer solar zenith angle from 0� to
90� for five ensemble members of each LES case. The colors denote
the different cases and the symbol shapes denote the surface
albedo. The 1:1 line is shown for reference.
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from making the ICA by using a 3D Monte Carlo radiative
transfer scheme applied to LES-generated 3D cloud fields.
The flux and albedo biases were assessed across different
cloud regimes and solar zenith angles. We took our findings
from four canonical LES cases and applied them to observed
climatological cloud occurrence to infer the spatially and tem-
porally resolved flux and albedo biases.

We find that the largest flux bias comes from deep con-
vective clouds at small solar zenith angles. The albedo bias
is large and negative for shallow cumulus clouds at large
solar zenith angles. These results quantitatively agree with
previous studies using LES clouds to assess 3D effects
(Hogan et al. 2019). There is room for future work consid-
ering a larger ensemble of cloud morphologies, which could
be generated again by LES or alternatively could be
retrieved from satellite observations. Our inferred global
flux bias is based on only four tropical/subtropical LES
cases and therefore does not represent the full diversity of
extratropical cloud morphologies. This methodology can-
not fully capture the effects of midlatitude storms, for
instance, which is why we do not emphasize our results out-
side of the tropics.

We use the observed positive correlation between CWP and
TOA flux bias from our LES ensemble to estimate the global
spatiotemporal bias from neglecting 3D radiative transfer in a
high-resolution ESM. We choose a simple linear model to
map from satellite observations of climatological CWP to
TOA flux bias. The deviations in our regression fit suggest that
there is potential for a more robust mapping from cloud prop-
erties to radiative flux bias. Future work is necessary to
explore this path toward a parameterization of 3D radiative
effects in ESMs.

The large flux bias for Cb clouds at small solar zenith angles
translates into a seasonal bias that peaks just off the equator
in the summer hemisphere, tracking the position of the ITCZ.
We estimate the annual-mean tropical-mean flux bias to be
3.1 6 1.6 W m22. The flux bias computed here is small com-
pared to the TOA shortwave flux errors typical for CMIP5
and CMIP6 models, which are on the order of 10 W m22 in
the mean (Zhao et al. 2018; Hourdin et al. 2020) and can
reach 50 W m22 in stratocumulus regions (Brient et al. 2019).

However, the 3D bias is still comparable to the signal of
anthropogenic greenhouse gas emissions for the coming deca-
des, which is on the order of 2.5–3.1 W m22 (Myhre et al.
2013). These results highlight the importance of considering
the 3D radiative fluxes through clouds for Earth’s radiation
budget and Earth system modeling.
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APPENDIX A

LES Model Setup

LES are performed using the anelastic fluid solver
PyCLES (Pressel et al. 2015). Subgrid-scale fluxes are
treated implicitly by the WENO scheme used in the numer-
ical discretization of the equations (Pressel et al. 2017).

For each case, the characteristic time scale of convection
is evaluated and taken to be representative of the dynami-
cal decorrelation time t. Snapshots are taken at least one
dynamical decorrelation time apart, so that the cloud

FIG. 9. (right) Map of annual-mean flux bias inferred from ISCCP in-cloud CWP. (left) Zonally averaged flux bias
in the black line and 1s error bars in the gray shading that are derived from the linear regression in Fig. 7. As in
Fig. 6, we show only 60�S–60�N because the clouds we have modeled are not representative of high latitudes.
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samples can be treated as independent in a statistical analy-
sis of the flux biases. The decorrelation time scale is calcu-
lated as

t5
zbl
w� 1

dc
�wu

, (A1)

where zbl is the mixed layer height, w�5 zblw0b0 sj Þ1=3
�

is the
Deardoff convective velocity, dc is the cloud depth, and �wu

is the mean updraft velocity within the cloud.

a. Shallow cumulus (ShCu) convection, BOMEX

The BOMEX LES case study is described in Siebesma
et al. (2003). Surface boundary conditions w0qt0 sj and w0ul0 sj
are prescribed, resulting in sensible and latent heat fluxes of
about 10 and 130 W m22, respectively. The atmospheric
column is forced by clear-sky longwave radiative cooling,
neglecting radiative cloud effects. A prescribed subsidence
profile induces mean vertical advection of all fields, and
specific humidity is further forced by large-scale horizontal
advective drying in the lower 500 m. The liquid-water spe-
cific humidity is diagnosed through a saturation adjust-
ment procedure. For BOMEX, the characteristic time
scale of convection is t � 40 min, where zbl 5 500 m,
w�50:66 m s21, dc 5 1300 m, and �wu50:85 m s21, and
snapshots are taken every 1 h. The domain size is set to
6.4 km in the horizontal and 3 km in the vertical.
Results are reported for an isotropic resolution of Dxi 5
20 m.

b. Shallow cumulus (ShCu) convection, RICO

The RICO LES case study is described in vanZanten
et al. (2011). The surface sensible and latent heat fluxes are
modeled using bulk aerodynamic formulae with drag coeffi-
cients as specified in vanZanten et al. (2011), resulting in
fluxes of around 6 and 145 W m22, respectively. The atmo-
spheric column is forced by prescribed profiles for subsi-
dence and large-scale heat and moisture forcings that are a
combination of radiative and advective forcings. The two-
moment cloud microphysics scheme from Seifert and
Beheng (2006) is used with cloud droplet concentration set
to Nd 5 70 cm23. For RICO, the characteristic time scale
of convection is t � 50 min, where zbl � 500 m,
w� � 0:62 m s21, dc 5 2500 m, and �wu � 1:2 m s21, and
snapshots are taken every 1 h. The domain size is set to
12.8 km in the horizontal and 6 km in the vertical. Results
are reported for an isotropic resolution of Dxi 5 40 m.

c. Stratocumulus-topped marine boundary layer (Sc),
DYCOMS-II RF01

The simulation setup for DYCOMS-II RF01 follows the
configuration of Stevens et al. (2005). The initial state con-
sists of a well-mixed layer topped by a strong inversion in
temperature and specific humidity, with Dul 5 8.5 K and
Dqt 5 27.5 g kg21. Surface latent and sensible heat fluxes
are prescribed as 115 and 15 W m22, respectively. In addi-
tion, the humidity profile induces radiative cooling above
cloud top and warming at cloud base. As in BOMEX, the

liquid-water specific humidity is diagnosed through a satura-
tion adjustment procedure. For the stratocumulus clouds,
without strong updrafts and a thin cloud layer, the charac-
teristic convective time scale is taken to be just the first
term of Eq. (A1), which evaluates to t � 20 min, with zbl �
850 m and w�50:8 m s21. Snapshots taken every 30 min
are used in the analysis. The domain size is set to 3.36 km
in the horizontal and 1.5 km in the vertical. Results are
reported for a resolution of Dz 5 5 m in the vertical and
Dx 5 Dy 5 35 m in the horizontal.

d. Deep convection (Cb), TRMM-LBA

Deep convective clouds are generated using the TRMM-
LBA configuration detailed in Grabowski et al. (2006),
based on observations of the diurnal cycle of convection in
the Amazon during the rainy season. The diurnal cycle is
forced by the surface fluxes, which are prescribed as a func-
tion of time. The magnitude of the fluxes maximizes 5.25 h
after dawn, with a peak latent and sensible heat fluxes of
554 and 270 W m22, respectively. The radiative cooling pro-
file is also prescribed as a function of time. We use the one-
moment microphysics scheme based on Kaul et al. (2015)
with modifications described in Shen et al. (2020). Since
this case study is not configured to reach a steady state, the
simulation is run up to t 57 hours. Deep convection is con-
sidered to be fully developed after 5 h, when the liquid-
water and ice-water paths stabilize (Grabowski et al. 2006).
The ensemble of cloud snapshots is formed by sampling
after t5 4, 5.5, and 7 h from a set of simulations with differ-
ent initial conditions. For the idealized case (Figs. 2 and 6)
only the 15 snapshots from t5 7 h are used. The character-
istic convective time scale is given by just the second term

of Eq. (A1), t5
ð zct

0
w21

u dz� 80 min, where zct and wu are

the cloud-top height and updraft vertical velocity averaged
over the last two hours, respectively. The random perturba-
tions used in the initialization ensure that all cloud snap-
shots in the ensemble are uncorrelated. The domain size is
set to 20 km in the horizontal and 22 km in the vertical.
Results are reported for a resolution of Dz 5 50 m in the
vertical and Dx 5 Dy 5 100 m in the horizontal.

For the large-domain simulations, we double the domain size
to 40 km in the horizontal and run a smaller ensemble of NLES

5 5 simulations. The mean cloud cover, cloud top heights, and
cloud water path in the large and small domain ensembles are
comparable at 0.30 and 0.32, 12.2 and 10.0 km, and 360 and
290 g m22, respectively. The large-domain simulations show a
higher degree of aggregation as measured by the variance in
total precipitable water, 4.3 mm2, compared to 3.7 mm2 in the
original 20-km domain. Figure A1 shows histograms of the
total precipitable water for each of the TRMM-LBA simula-
tions at 7 h (NLES 5 15 for the 20-km domain, and NLES 5 5
for the 40-km domain). The wider histograms for the
large-domain simulations illustrate the larger variance in
this field, which is indicative of a higher degree of convec-
tive aggregation.
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APPENDIX B

Radiative Transfer Details

We use the libRadtran MYSTIC Monte Carlo solver for
the 3D and ICA radiative transfer calculations with no vari-
ation reduction techniques applied. The ICA is done using
the mc_ipa setting which horizontally averages the fluxes
from the full 3D calculation. The RT is done using n 5 104

photons using the atlas_plus_modtran solar spectrum. The
atmospheric molecular absorption is done using the kato2
correlated-k parameterization (Kato et al. 1999; Mayer and
Kylling 2005). The atmospheric profile (pressure, tempera-
ture, density, and specific humidity) defined for the radia-
tive transfer comes from the LES output and aerosols are
neglected in these calculations. Because we only consider
the flux bias and not absolute values, the LES are not
embedded in a clear-sky atmosphere with a profile exten-
sion to a fixed height, although this is typical for radiative
transfer calculations. The surface is treated as a Lambertian
scatterer and the albedo was set to aO 5 0.06 for all RT
calculations. The observed surface albedo is accounted for
through the approximation described in section 5. Both the
LES and RT assume doubly periodic horizontal boundary
conditions and the spatial resolution, which can be found in
Table 1 for each case, is the same.

The MYSTIC solver from libRadtran requires 3D fields
of liquid and ice water content and particle effective radius
as input. The LES uses bulk microphysics schemes and
does not explicitly compute the effective radius. For liquid-
only clouds, the parameterization from Ackerman et al.
(2009) and Blossey et al. (2013) with assumed droplet num-
ber of Nd 5 108 m23 is used. The full Mie scattering phase
function is taken from the libRadtran lookup tables.
Because the lookup tables are only valid for droplets with
radius greater than 1 mm, smaller calculated effective radii
were rounded to this minimum value.

For ice clouds, the parameterization from Wyser (1998) is
used. The hey parameterization from Yang et al. (2013) and

Emde et al. (2016) with habit type set to general habit mixture
(ghm) is used. The hey parameterization uses the complete
scattering phase function as calculated from single scattering
models for ice crystals in (Yang et al. 2013), rather than
employing an approximation like Henyey–Greenstein phase
function, which has been shown to be another source of error
in RT (Barker et al. 2015). The results are not dependent on
the exact choice for ice crystal shape or roughness (Fig. B1).
Note that the hey ice parameterization is only valid for radii
less than 90 mm, and larger calculated effective radii were
rounded to this maximum value.

Deep convective clouds, reaching upward of 10 km, nearly
always contain ice crystals in addition to liquid water. Optical
properties of ice crystals depend on their size, shape (or habit),
and surface smoothness. Two different parameterizations, with
three and four habit choices, respectively, were tested. The dif-
ferences between these parameterization variants are negligible;
they are much smaller than the variability stemming from the
cloud dynamics (statistical spread between snapshots) and also
much smaller than the magnitude of the 3D effects (Fig. B1).

The hey parameterization with ghm is used in the main
text (Yang et al. 2013; Emde et al. 2016). This parameteri-
zation is valid for a spectral range from 0.2 to 5 mm, and
for ice effective radii from 5 to 90 mm. hey assumes smooth
crystals and allows for four choices of habit: ghm, solid col-
umn (col), rough aggregate (agg), and plate.

The other parameterization tested was baum_v36 (Heymsfield
et al. 2013; Yang et al. 2013; Baum et al. 2014). This parameteri-
zation is valid over a wider spectral range (0.2–99 mm), but a
narrower effective radius range (5–60 mm). Particles with effec-
tive radius outside of the accepted range were rounded to the
maximum allowed value. The baum_v36 parameterization
assumes severely roughened particles. It allows for three choices
of habit: ghm, col, and agg.

These seven variants are compared in Fig. B1 for one cloud
snapshot from the TRMM-LBA case and they show very sim-
ilar results. Also shown in Fig. B1 is a RT calculation done
on the same cloud field, but only including the liquid droplets
and ignoring the ice particles. We use the full Mie scattering

FIG. A1. Normalized histogram of total precipitable water from the
TRMM-LBA simulations in a 20-km domain vs 40-km domain, which
we use as a less and more aggregated case of deep convection. The
variance across the ensemble, shown by the width of the histogram, is
representative of the degree of convective aggregation.

FIG. B1. TOA reflected bias across zenith angles for different ice
parameterizations in one TRMM-LBA cloud snapshot.
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phase function without any parameterization for the liquid
portion of the cloud in all cases. The difference between the
liquid-only and liquid and ice simulated absolute fluxes can be
up to 20% depending on the parameterization used (not
shown), but the flux bias (ICA-3D) is very similar for the liq-
uid-only and all ice parameterizations.

APPENDIX C

Cloud Property Proxy for Flux Bias

We explored several different cloud properties to use as a
proxy for the flux bias. Our limited study concluded that the in-
cloud cloud water path (CWP) was the best proxy because it
shows a strong positive, linear correlation with flux bias. Other
cloud scene properties we examined included cloud top height
(CTH), cloud cover (cc), and the geometric mean of covered
area and uncovered area,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cc 12ccð Þp

. The linear regression fits
are shown in Fig. C1. The rms error for CWP is the smallest.
Although CTH (or cloud depth) are also reasonable proxies,
they are more difficult to measure from satellite, and therefore
we use CWP in this study. An important extension to this work
would be to allow for multiple cloud properties and a more
complex model than a linear fit to describe the flux bias. How-
ever, with our limited data from only four LES cases in this

present study, we do not feel justified to use a more complex
model.
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