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Abstract
We describe a novel algorithm for the robust approximation of elastic, inelastic, and frictional contact problems in explicit
computations. The method is based on a master-slave concept and a predictor/corrector split of the dynamic update. In the
predictor step, the bodies move ignoring all contact interactions; in the correction, the nodes that have penetrated a body
are pushed back while correcting their velocities to preserve linear momentum and balance the kinetic energy. In contrast
with existing predictor/corrector contact algorithms, no iterations nor global computations are required in the correction step.
Moreover, thanks to the geometrical basis of the method, the choice of an artificial penalty parameter is avoided. The contact
algorithm does not require the computation of the normal vectors at the contacting surfaces, making it especially useful for
simulations that employ finite element and certain meshfree discretizations, and for the simulation of contact among bodies
with non-smooth boundaries.

Keywords Explicit integration · Contact · Predictor/corrector scheme · Finite elements · Meshfree methods

1 Introduction

Contact simulation is a key ingredient of Computational
Solid Mechanics, one that is almost invariably employed for
complex problems, especially in dynamics. Its ubiquitous-
ness and the difficulties deriving from its non-smooth nature
have prompted the publication of many different algorithmic
approaches. Existing reviews [1–3] and monographs [4,5]
classify the numerous works available on the topic, and attest
to the relevance and difficulty of the problem, as well as the
diversity of numerical approaches for its approximation.

In particular, dynamic contact is a central part of many
nonlinear problems, including those involving ballistics,
crashworthiness,metal forming, rolling, etc. The heterogene-
ity of applications has resulted in a wide range of algorithms
that can be classified according to different criteria. In this
work we focus on purely Lagrangian descriptions for solid
bodies, where most of the literature is available (see, among
many others, [6–13]).

B I. Romero
ignacio.romero@imdea.org

1 Universidad Politécnica de Madrid, Madrid, Spain

2 IMDEA Materials Institute, Eric Kandel, 2, Tecnogetafe,
28906 Madrid, Spain

3 California Institute of Technology, Pasadena, USA

A first crucial issue in the numerical treatment of contact
is the overlap detection. In problems with multiple bodies,
this step is very expensive in computational terms, and opti-
mized search algorithms are absolutely necessary for large
scale applications [10,11]. In these cases, moreover, parallel
algorithms have been proposed to alleviate the overhead due
to contact [12,14–16].

Implicit and explicit solutions of contact problemsdemand
different strategies for the enforcement of the impenetrabil-
ity condition. For fast processes, explicit algorithms are the
methods of choice, and in this work we focus on them. Con-
tact/impact algorithms for explicit integration are most often
based onvariations of themaster-slave concept that goes back
to the eighties [6,7]. In all these methods, the boundaries of
the interacting bodies are discretized and their interpenetra-
tion is discouraged by means of carefully selected penalty
forces whose magnitude, as a function of the penetration, is
artificially selected [9,10,12–14]. Such a choice must strike
a balance between a very stiff response that will effectively
reduce the admissible time step size, and a very compliant
one, which will not reproduce the impenetrability constraint
properly.

Another option to enforce the impenetrability condition
consists in using Lagrange multipliers, but this method can-
not be applied directly in an explicit integration [5] because
the diagonal form of the mass matrix is lost. To take advan-
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tage of the exact impenetrability enforcement of the method
of Lagrange multipliers, and to avoid the definition of arti-
ficial penalty parameters that might affect the stability of
the time integration, modified strategies have been proposed.
For example, some methods solve iteratively the global sys-
tem of equations, including the contact constraints, until
convergence [9,13,17,18]. Others, in order to speed up the
computations, enforce locally the constraints, calculating
the contact reactions (i.e., the Lagrange multipliers) in an
iterative fashion [19] or explicitly, based only on geomet-
ric relations and balance principles [20]. The present work
uses a predictor-corrector scheme of the latter type, hence
completely avoiding the complex issue of artificial penalty
selection and yielding a numerical method that is very robust.
In addition, the method proposed has favorable properties
from the energetic point of view that add to its robustness.

Methods based on master-slave contact models are intrin-
sically asymmetrical, due to the different roles played by the
master and slave surfaces. A simple solution to avoid such a
difference is to define twice each interacting pair, exchang-
ing the master/slave roles in each of them. In this article we
refrain from such a symmetrization, motivated by the poten-
tial application of themethods developed herein to numerical
models that combine finite element and meshfree discretiza-
tions. These models are frequently employed together with
explicit codes to calculate the solution of problems involving
bodies that are severely distorted or even fragmented. This
is the case of ballistics, mentioned before, but also crash
simulations, structures under explosive loading, etc. In these
situations, it is often advantageous to employ a mixed spatial
discretization, one in which finite element models interact
with meshfree bodies. Using such a combination, the mesh-
free parts can be employed to represent the components that
are more severely distorted, while the finite element sub-
domains can model the rest, combining the advantages of
meshfree methods to accommodate large distortions, and the
efficiency of finite elements [21–24]

From the point of view of contact, however, the key issue
is not whether the interacting bodies of a model are dis-
cretizedwith finite elements or ameshfreemethod, but rather
if their boundaries are well defined, as in a finite element
mesh, but not in a meshfree or particle representation. Con-
tact algorithms that need to compute the surface normals at
contact points run into difficulties when dealing with mesh-
free discretizations which, strictly speaking, do not define
this vector field at every boundary point. The method pre-
sented in this work does not require the calculations of the
normal vectors to the interacting surfaces. This, first, allows
for a simple contact definition between meshfree and finite
element discretizations. Additionally, it can model, without
any modification, contact among bodies with non-smooth
boundaries.

In this article we will use examples that combine the two
types of spatial discretizations, but the method is directly
applicable to models based only on finite elements, where
the asymmetry of the contact interaction could be reversed,
if desired, as in other standard implementations.

The rest of the article has the following structure. In Sect. 2
we briefly summarize the governing equations of dynamic
contact. Section 3 discusses the spatial discretization of the
problem. The new contact algorithm is described in Sect. 4
where elastic, inelastic, and frictional cases are considered. In
addition to the algorithmic details, proofs of energy conserva-
tion/dissipation are provided for eachmodel. The simulations
of Sect. 5 illustrate the features of the method using mixed
finite element/meshfree examples, and the article is closed in
Sect. 6 with a summary of the most relevant results.

2 Problem description

We briefly recall the governing equations of a problem
withmultiple deformable bodies, possibly interacting among
them through frictionless contact. More complex contact
interactions will be considered in the numerical methods of
Sect. 4, but we limit the theoretical exposition to the friction-
less case for simplicity.

Each of the bodies considered in the problem will be
referred to as Bi , with i = 1, . . . , N , corresponding to an
open subset of R3 with boundary ∂Bi . Points on any of the
bodies are denoted as X and we assume the existence of
N deformations ϕi : Bi × [0, T ] → R

3. To formulate the
contact problem, we employ the notion of distance between
bodies defined as

d(Bi ,B j ) = inf
x∈ϕi (Bi )

inf
y∈ϕ j (B j )

|x − y|. (1)

In addition, it is important to partition the boundary ∂Bi of
each body into disjoint subsets Γ t

i , Γ
ϕ
i , Γ c

i j referring to the
boundary with Neumann conditions, Dirichlet conditions,
and contact forces, respectively, which satisfy

∂Bi = Γ t
i ∪ Γ

ϕ
i ∪N

j=1 Γ c
i j . (2)

Then, the problem is formulated as:

Div P + ρ0B = ρ0ϕ̈i in Bi

ϕi = ϕ̄i on Γ
ϕ
i

PN i = T̄ i on Γ t
i

PN i = −pi jN i on Γ c
i j

(3)

where Div is the material divergence, P the first Piola-
Kirchhoff stress tensor, ρ0 the reference density, B the
volumetric force, ϕ̄i a surface field of known deformations,
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T̄ i the known tractions, N i the normal field to the body, and
pi j the contact pressure of the j th body on the i th one. These
contact pressures satisfy

pi j ≥ 0, pi j d(Bi ,B j ) = 0, pi j = p ji . (4)

The goal of this work is to present a numerical method
for the space and time discretization of Eqs. (3) and (4).
Such an approximation is fairly standard in the absence of
contact interactions. However, the numerical treatment of the
complementary conditions (4) greatly complicates the global
problem.

3 Spatial discretization

We start by considering a spatial discretization of the bodies
{Bi }Ni=1. The methods later introduced are general enough
to encompass both finite element and meshfree discretiza-
tions. However, they are limited by the constraint that at
least one of the discretized bodies in each contact inter-
action must have a well-defined boundary. In practice,
this means that even though bodies can be discretized in
space with a mesh or particle-based method, each pair-
wise contact interaction must involve at least one meshed
body.

The key classification of the contacting bodies is thus
between those that possess a mesh and those that not, and
we refer to these sets, respectively, as F and M. For either
type, we assume henceforth that we can define an approxima-
tion of every scalar, vector, or tensor field f on Bi , denoted
f h , and defined as

f (X) ≈ f h(X) =
∑

α

Ni,α(X) ci,α. (5)

The scalar functions Ni,α : Bi → R are the standard finite
element shape functions, if the body is discretized with a
mesh, or some meshfree interpolation function if not. In
either case, the scalars ci,α are simply the weights in the
linear combination (5).

We briefly describe the key features of the two types of
spatial discretizations considered in the current work.

3.1 Finite element discretization

A body Bi ∈ F is discretized with finite elements by defin-
ing a node set Ni and a triangulation Ti of tetrahedra or
hexahedra. This triangulation partitions the domain into dis-
joint elements eα

i ⊂ Bi with vertices nα
i ∈ Ni and allows

to construct piecewise polynomial functions Ni,α with the
property Ni,α(nγ

i ) = δαγ , where δαγ refers to the Kronecker

delta. The support of the function Ni,α is the set ∪
eβ
i �nα

i
eβ
i .

3.2 Meshfree discretization

Let Bi ∈ M, and define a finite node set Ni = {
nα
i

}
on

this domain. By definition, there might be a mesh defined on
Bi or not, but we will never make reference to it. The only
condition on the discretization of this body is that there exists
a collection of approximation functions Ni,α : Bi → R such
that linear combinations of the type (5) can be employed to
approximate the deformation and velocity of the body. In
what follows, we refer to bodies in M as meshfree bodies
to indicate that there is no need for a mesh to be defined on
them, although they might have it.

There ismuch freedom in the choice of these functions. As
stated before, they might be finite element shape functions
if the body has a mesh, but can also be any meshfree func-
tion including those employed in the element free Galerkin
method, the natural neighbormethod, or any other of this sort
(see, e.g. [25], for a review).

For the kind of explicit computations considered in
the current work, meshfree methods based on approxima-
tion functions that possess the Kroneker’s delta property
greatly simplify the contact implementation.Not allmeshfree
method satisfy this condition, but approximations such as the
ones defined in the natural elementmethod [26], and the local
maximum entropy functions with log-distance [27], verify
the Kroneker’s delta property. Meshfree discretizations with
local finit element enrichments can also be employed to this
goal [23,28]. In the derivations that follow we will assume
that themeshfree discretizations of the bodies inM are inter-
polatory and, in particular, in Sect. 5 we will employ local
maximum entropy functions.

3.3 Semi-discrete equations of motion

When a Galerkin type method is employed to approximate
the balance of linear momentum equation in all the bodies
of the model, irrespective of the discretization strategy cho-
sen, a system of semi-discrete equations is obtained with the
standard form. In particular, for the i th body this ordinary
differential equation reads

∫

Bi

ρ0ϕ̈
h
i · ηh dV +

∫

Bi

P · Grad ηh dV

=
∫

Bi

ρ0B · ηh dV +
∫

Γ t
i

T̄ i · ηh dA

−
∑

j

∫

Γ c
i j

pi jN i · ηh dA,

(6)

where ηh : Bi → R
3 is an arbitrary weighting function

in the finite element or meshfree space. We note that these
equations are completely identical, except for the last term
accounting for the contact interactions, to the equations of
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motion in nonlinear dynamics. Associated to these interac-
tions, conditions (4) need to be employed to calculate the
contact pressure.

Selecting the test functionηh to be of the formηh = Ni,αc,
with nα

i ∈ Ni and c ∈ R
3, the equations of motion in matrix

form follow

M i Φ̈
i + f iint = f iext ,

f i,αint =
∫

Bi

P Grad Ni,α dV ,

f i,αext =
∫

Bi

ρ0BNi,α dV +
∫

Γ t
i

T̄ i Ni,α dA

−
∑

j

∫

Γ c
i j

pi jN i Ni,α dA,

(7)

whereΦ i , f iint , f iext are the vectors collecting, respectively,
the nodal deformations, internal forces, and external forces.
The matrix M i is the mass matrix of body Bi which, in order
to later obtain an explicit method, is lumped into diagonal
form. In other words, the (i, j) component in the block relat-
ing nodes α and β is

Mi j
αβ = mi,αδαβδi j , (8)

with mi,α the mass of node nα
i .

4 Time integration and contact algorithm

The semi-discrete equations (6) are next integrated in time
with an explicit algorithm. The main idea of the proposed
method is to use a predictor-corrector scheme: first we inte-
grate the equations of motion using the central difference
method, ignoring all possible contacts; then, we correct the
positions and velocities to account for the pairwise interac-
tions.

To define the integration, we select M + 1 instants tn =
n Δt ,withn = 0, 1, . . . M ,whereΔt = T /M is the time step
size, assumed for simplicity to be constant. Then, we define
the approximations to the deformations, material velocities,
andmaterial acceleration, respectively, at each node and time
tn to be ϕ

i,α
n , v

i,α
n , ai,αn , where the index i runs through all

body labels and α through the node set in each body. Follow-
ing the standard notation, we will refer to fn+γ as the convex
combination (1 − γ ) fn + γ fn+1 for any nodal variable f ,
and γ ∈ [0, 1].

Collecting the nodal deformations into a global vector
Φn , we can postulate a predictor state as given by the nodal
updates

ãi,α = (mi,α)−1
(
f̃
i,α
ext (Φn−1/2) − f i,αint (Φn−1/2)

)
,

ṽi,α = vi,αn + Δt ãi,α,

ϕ̃i,α = ϕi,α
n + Δt ṽi,α.

(9)

where f̃
i,α
ext refers to the nodal external force defined in

Eq. (7), but ignoring the contributions due to contact inter-
actions. We note that, as in the standard central difference
method, the predictors ϕ̃i,α and ṽi,α refer to quantities at
time tn+1 while ã

i,α is an approximation to the acceleration
at time tn+1/2.

After the positions of the bodies have been predicted using
the central difference method, these are corrected to account
for possible penetrations. The latter result in tractions on
the contacting surfaces which in turn cause the exchange of
momenta and energy.

4.1 Contact detection

Before any contact modeling can be done, the overlap of
bodies in the predicted solution must be detected. Obviously,
if there is no overlap, this predicted solution needs not be
corrected and the integration step can proceed as in free body
dynamics.

The focus of this article is on the modeling and simula-
tion of contact interactions between bodies discretized with
a mesh structure and others without it. Thus, for simplicity,
we consider next only the analysis of the potential contact
between a body Bi ∈ F and a second one B j ∈ M as
depicted in Fig. 1. We assume also, for simplicity, that the
body Bi does not crack or break during the simulation, and
thus its boundary remains unchanged.We note, however, that
this choice in not due to any limitation of the contact algo-
rithm itself.

We note that only Bi has a well-defined boundary, and
thus contact detection algorithms between these two bodies
are not symmetric. On Bi we can hence define the skin as the
element set

Si =
⋃

eα
i ∩∂Bi 
=∅

eα
i (10)

Fig. 1 The two types of bodies considered are meshed (left) and mesh-
free (right). Bodies with a mesh have a well-defined skin of elements
intersecting the boundary
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with nodes

Σi = Ni ∩ Si . (11)

From the computational point of view it is important to
realize that the skin typically contains far fewer elements that
the body Bi itself.

The skin will be used to monitor potential penetrations
of the meshfree body into the space occupied by the finite
element body. In our computations, we simply verify in an
exhaustive fashion if the predicted position of any of the
nodes on the surface of B j falls withinΣi . To ensure that the
predicted positions ϕ̃ j,β do not fall within the body Bi and
beyond its skin, we must restrict the time step size to be

Δt = min

(
ΔtCFL ,

hi
Vi + Vj

)
. (12)

In this expression ΔtCFL is the time step size as dictated
by the CFL condition in the deformable bodies, hi is the
minimum element size in the skin Si , and Vi , Vj are the
largest moduli of the velocity vectors in the two contacting
bodies.

When the time step size in the integration scheme is
selected according to Eq. (12), the predicted position of the
node nβ

j ∈ N j can be either outside the skin of Bi , on its
surface, or inside it. In the first two situations there is no
violation of the inter-penetrability constraint, and thus the
predicted position, velocity, and acceleration of the nodes
nα
i ∈ Ni and n

β
j ∈ N j can be taken as the correct one for the

update and thus

(
ϕ
i,α
n+1, v

i,α
n+1, a

i,α
n+1/2

)
=

(
ϕ̃i,α, ṽi,α, ãi,α

)
,

(
ϕ

j,β
n+1, v

j,β
n+1, a

j,β
n+1/2

)
=

(
ϕ̃ j,β , ṽ j,β , ã j,β

)
.

(13)

4.2 Correction geometry

We study next the correction update for the nodes nβ
j ∈ N j ,

with B j ∈ M, and nα
i ∈ Σi when the predictor update

has placed nβ
j inside the skin Si , that is, ϕ̃ j,β ∈ ϕi (Si ). In

such situations we need, first, to define a correction direction
n, with |n| = 1, which will be used to move the predicted
position away from the interior of Bi . The definition of such
vector is not trivial because it must be defined for convex and
concave polygonal bodies, and certain obvious definitions,
such as the direction towards the closest point projection on
the boundary, might not be well-defined.

For a general meshed domain Bi , if the node nβ
j ∈ N j ,

with B j ∈ M, at its predicted position is inside ϕi (Si ),
then there must exist at least one element eα

i ∈ Si such that

nβ
j ∈ eα

i (See Fig. 2). For three dimensional problems, the

Fig. 2 Two types of skin penetration in plane problems

element eα
i must have a face, an edge, or a vertex on ∂Bi , and

the computation of the correction direction is different in the
three situations.

The correction that needs to be performed after a pene-
tration has been detected can be split in two steps. First, the
node in themeshfree bodymust be moved onto the surface of
the skin. Second, an exchange of linear momentum must be
accounted for between this node and those in the element eα

i .
We address first the position correction. For any type of

finite element body, be it convex or concave, we define the
corrected position to be

ϕ
j,β
n+1 = arg min

x∈eα
i ∩∂Bi

|ϕ̃ j,β − x|, (14)

noting that, for simplicial meshes, the set eα
i ∩ ∂Bi , which

might be a triangle, and edge, or a vertex, is always con-
vex, and thus the minimization problem in (14) has always a
unique solution. If the finite element mesh of the body Bi is
not simplicial, this minimization might have more than one
solution. In this case the corrected position is taken to be any
of them.

Once the corrected position of the node has been obtained,
an exchange of momentum is applied onto this same node
and the nodes of the element eα

i . For that, an update direction
needs to be defined which, irrespective of the smoothness of
the surface at the projection point can always be defined as

n = ϕ
j,β
n+1 − ϕ̃ j,β

|ϕ j,β
n+1 − ϕ̃ j,β |

. (15)

4.3 Correction forces

The node nβ
j ∈ N j that has penetrated the skin and the

element eα
i ∈ Bi must exchange linear momentum to cor-

rect their trajectories. More specifically, we identify the set
σα
i = {nγ

i ∈ eα
i ∩ ∂Bi } of nodes in the finite element that

receive an impulse due to the contact. In addition, we assume
that the node nβ

j and the nodes in σα
i have masses, denoted

respectively asmβ
j andm

γ

i , obtained by lumping their corre-
sponding element or meshfree contributions, as explained in
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Sect. 3. Using these lumped masses we define the momenta
of the nodes at time tn+1 as

p j,β
n+1 = mβ

j v
j,β
n+1 , pi,γn+1 = mγ

i v
i,γ
n+1, (16)

and use the notation p̃ j,β , p̃i,γ for the predicted values. The
kinetic energy of the nodes will be denoted as K j,β

n+1, etc.,
and defined as

K j,β
n+1 = 1

2
mβ

j |v j,β
n+1|2, Ki,γ

n+1 = 1

2
mγ

i |vi,γn+1|2, (17)

again with K̃ j,β , K̃ i,γ referring to the predicted values.
Let us consider, for themoment, a frictionless contact with

perfect energy restitution. Given the position and velocity of
nodes nβ

j ∈ B j and nγ

i ∈ σα
i at the predictor step, and the

unit vector n defined in Eq. (15), to compute their corrected
velocities we impose the following balance equations:

p j,β
n+1 − p̃ j,β = λ j,βn, (18a)

pi,γn+1 − p̃i,γ = −λi,γ n, (18b)

p j,β
n+1 +

∑

γ |nγ
i ∈σα

i

pi,γn+1 = p̃ j,β +
∑

γ |nγ
i ∈σα

i

p̃i,γ , (18c)

K j,β
n+1 +

∑

γ |nγ
i ∈σα

i

K i,γ
n+1 = K̃ j,β +

∑

γ |nγ
i ∈σα

i

K̃ i,γ . (18d)

Equations (18a) and (18b) express the changes in linear
momentum in the involved nodes at impact. Equations (18c)
and (18d) enforce the conservation of total linear momentum
andkinetic energy, respectively. The systemof equations (18)
must be solved to find the updated velocities in the nodes and
the impulses λ j,β , λi,γ which, if there is to be a physically
realistic impact, must be non-negative. However, this system
is, in general, undetermined. To see this, let us first note that
the components of the linear momenta that are orthogonal to
n are conserved. Given any vector m such that n · m = 0,
from Eqs. (18a) and (18b) we obtain

p j,β
n+1 · m = p̃ j,β · m, (19a)

pi,γn+1 · m = p̃i,γ · m. (19b)

Hence, if M is the number of nodes in σα
i , the system (18)

can be reduced to a system of M + 3 scalar equations

p j,β
n+1|n − p̃ j,β |n = λ j,β , (20a)

pi,γn+1|n − p̃i,γ |n = −λi,γ , (20b)

p j,β
n+1|n +

∑

γ |nγ
i ∈σα

i

pi,γn+1|n = p̃ j,β |n +
∑

γ |nγ
i ∈σα

i

p̃i,γ |n (20c)

K j,β
n+1 +

∑

γ |nγ
i ∈σα

i

K i,γ
n+1 = K̃ j,β +

∑

γ |nγ
i ∈σα

i

K̃ i,γ (20d)

where the notation (·)|n denotes the projection of a vec-
tor onto the direction n. In this system there are 2M + 2
unknowns, namely, the M + 1 components of the linear
momenta at the corrected step in the direction of n, and the
M+1 impulses. The system has a unique solution only when
M = 1.We propose next a contact model that providesM−1
additional equations and allows to solve the update for an
arbitrary number of nodes in the contacting surface. First, let
us note that Eq. (20c) can be rewritten as

λ j,β =
∑

γ |nγ
i ∈σα

i

λi,γ . (21)

Then, let us define the barycentric coordinates of the projec-
tion ϕ

j,β
n+1, that is, the scalars χ i,γ ≥ 0 such that

ϕ
j,β
n+1 =

∑

γ |nγ
i ∈σα

i

χ i,γ ϕ̃i,γ , (22)

with
∑

γ |nγ
i ∈σα

i
χ i,γ = 1, noting that the projected position

depends only on the predictors. In view of thewell-posedness
of projection (14) the coordinates are unique. The contact
model proposed apportions the impulse λ j,β to the nodes on
σα
i according to these barycentric coordinates, that is,

λi,γ = χ i,γ λ j,β , (23)

providing M − 1 additional equations that close the sys-
tem (20).

4.4 Velocity solution algorithm

The final step in the contact update is the solution of the
system of equations (20). A closed form expression for the
impulses and velocities at the predicted step can be found
as follows. An algebraic manipulation shows that the energy
balance (20d) can be written as

0 =
∑

γ |nγ
i ∈σα

i

(
(λi,γ )2

2mγ

i

− λi,γ ṽi,γ · n
)

+ (λ j,β )2

2mβ
j

+ λ j,β ṽ j,β · n.

(24)

Then, using the contact law (23) and defining

ν̃i,α =
∑

γ |nγ
i ∈σα

i

χ i,γ ṽi,γ ,
1

μα
i

=
∑

γ |nγ
i ∈σα

i

(χ i,γ )2

mγ

i

, (25)

Equation (24) can be rewritten as

0 = (λ j,β)2

2

(
1

μα
i

+ 1

mβ
j

)
+ λ j,β

(
ṽ j,β − ν̃i,α

)
· n. (26)
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This second order polynomial in λ j,β has a unique non-zero
root

λ j,β = 2
mβ

j μα
i

mβ
j + μα

i

(
ν̃i,α − ṽ j,β

)
· n, (27)

which gives the modulus and direction of the correction
impulse on the node nβ

j on the meshfree body. The corre-
sponding impulses on the finite element surface are easily
obtained using Eq. (23). Remarkably, Eq. (27) has the same
structure as the formula that computes the change of linear
momentum in the collision between two point masses. The
proposed algorithm, hence, can be thought of as solving the
impact between the node nβ

j and a particle of mass μα
i and

velocity ν̃i,α .
Physical arguments require that the impulses imparted to

the nodes due to impact are all non-negative. In fact, for the
model employed, Eq. (23) shows that it is sufficient to show
that λ j,β ≥ 0. The inner product in Eq. (27) can be rewritten,
with the aid of Eqs. (9) and (25), as

n ·
(
ν̃i,α − ṽ j,β

)
= 1

Δt
n ·

⎛

⎜⎝
∑

γ |nγ
i ∈σα

i

χ i,γ ϕ̃i,γ − ϕ̃ j,β

⎞

⎟⎠

− 1

Δt
n ·

⎛

⎜⎝
∑

γ |nγ
i ∈σα

i

χ i,γ ϕ
i,γ
n − ϕ

j,β
n

⎞

⎟⎠ .

(28)

The first term on the right hand side can be further simplified
to

1

Δt
n ·

⎛

⎜⎝
∑

γ |nγ
i ∈σα

i

χ i,γ ϕ̃i,γ − ϕ̃ j,β

⎞

⎟⎠= 1

Δt
n ·

(
ϕ

j,β
n+1 − ϕ̃ j,β

)

= |ϕ j,β
n+1 − ϕ̃ j,β |

Δt
, (29)

which is, obviously, non-negative. The second term in
Eq. (28) has an undetermined sign. When the contacting
surfaces are smooth, it should be expected that the term in
parenthesis does not differ much from n, which is computed
for the predictor, and that this term becomes non-negative.
In the case of surfaces with corners, however, this need not
be the case and it might result in numerical impulses that
are in the opposite direction to the one expected. This is a
side effect of the explicit integration, but one that rarely takes
place. When it happens, it is always restricted to very small
regions, and we accept it without any ad hoc correction.

4.5 Inelastic collisions

During inelastic collisions kinetic energy is not preserved and
hence Eq. (20d) is not verified. Instead, a different relation

needs to be provided to relate the velocities of the impacting
nodes, plus one extra equation that accounts for the energy
loss. A common choice is a linear equation that determines
a ratio of the relative velocities between colliding particles.
Using again the two-particle impact analogy, we propose this
equation to be

(ν
i,α
n+1 − v

j,β
n+1) · n = −e(ν̃i,α − ṽ j,β) · n, (30)

where e ∈ [0, 1], is the coefficient of restitution and ν
i,α
n+1 is

defined, in analogywith the definition of equivalent predictor
velocity in expression (25), as the vector

ν
i,α
n+1 =

∑

γ |nγ
i ∈σα

i

χ i,γ v
i,γ
n+1. (31)

In what follows, we have assumed that e is constant, and
identical for all contacting points.More sophisticated contact
models in which e is locally defined as a function of the
material properties could be envisioned, and incorporated to
the algorithm directly. Using Eqs. (20a)–(20c), (23) and (30),
the correction impulse on the node nβ

j follows as

λ j,β = (1 + e)
mβ

j μα
i

mβ
j + μα

i

(ν̃i,α − ṽ j,β) · n. (32)

When e = 1, we recover the energy-preserving solution
given by Eq. (27); when e = 0, the dissipation in the projec-
tion step ismaximum. To see this, let us define the dissipation
D = K̃ − Kn+1 and employ Eq. (26) to obtain

D = λ j,β
(
ν̃i,α − ṽ j,β

)
· n − (λ j,β)2

2

μα
i + λ j,β

μα
i λ j,β

. (33)

Taking the derivative of this equation with respect to λ j,β ,
and setting it equal to zero we can deduce that the dissipation
has its maximum value when the impulse is

λ
j,β
maxD = mβ

j μα
i

mβ
j + μα

i

(
ν̃i,α − ṽ j,β

)
· n, (34)

which is precisely the value obtained in Eq. (32) when e =
0. As a result, the maximum value of the dissipation in a
frictionless but inelastic impact is:

D = μα
i m

β
j

2(μα
i + mβ

j )

((
ν̃i,α − ṽ j,β

)
· n

)2
. (35)
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4.6 Frictionmodels

Last, we consider potential frictional effects between the
contacting bodies, allowing for contact impulses with both
normal and tangential components. The governing equations
of the problem are similar to Eqs. (18), but now the impulses
should not be restricted to be parallel to the direction n. The
general discrete balance equations are thus

p j,β
n+1 − p̃ j,β = i j,β , (36a)

pi,γn+1 − p̃i,γ = i i,γ , (36b)

p j,β
n+1 +

∑

γ |nγ
i ∈σα

i

pi,γn+1 = p̃ j,β +
∑

γ |nγ
i ∈σα

i

p̃i,γ , (36c)

(
ν
i,α
n+1 − v

j,β
n+1

)
· n = −e

(
ν̃i,α − ṽ j,β

)
· n, (36d)

where i j,β , i i,γ are now the impulses on the nodes. The solu-
tion of this system can be more easily obtained if the first
three equations are projected onto the direction n, and later
solved in the plane perpendicular to this vector. The three
projections onto n, together with Eq. (36d), are precisely the
ones studied in Sect. 4.5 and yield the velocity updates in the
n direction.

The velocity updates in the plane orthogonal to n require
additional model equations. To introduce such a model, let
us first define the projection

Π(v) = v − v|nn = v − (v · n)n, (37)

mapping an arbitrary vector v onto the orthogonal comple-
ment to n, and let ω̃i,α be the weighted velocity

ω̃i,α = 1

Mα
i

∑

γ |nγ
i ∈σα

i

mγ

i ṽi,γ , (38)

with Mα
i being the total mass of the nodes in σα

i . In the
orthogonal complement to n, let us define the unit vectors

τ = Π(ṽ j,β − ω̃i,α)
∣∣Π(ṽ j,β − ω̃i,α)

∣∣ , ξ = τ × n. (39)

To model the frictional effects, first, we decompose the
nodal impulses on the tangential directions ξ and τ as in:

Π(i j,β) = −η j,βτ − ρ j,βξ , Π(i i,γ ) = ηi,γ τ + ρi,γ ξ ,

(40)

where η j,β , ρ j,β are nonnegative scalars and ηi,γ , ρi,γ

distribute the impulse among the contacting nodes. Sec-
ond, some additional relations must be provided among
the tangential and normal impulses. Assuming a simple

Coulomb law with constant friction coefficient μ, the tan-
gential impulse on the node must satisfy

0 ≤
√

(η j,β)
2 + (ρ j,β)

2 ≤ μ λ j,β . (41)

Finally, the two possible contact types, namely stick or slip
contact, must be distinguished, and modeled accordingly.

During stick contact there is no sliding in the tangential
direction between the node nβ

j and the surface σα
i , and to

enforce this condition we assume the simplifying relation

Π
(
v
i,γ
n+1

)
= Π

(
v
j,β
n+1

)
, (42)

for all nodes nγ

i ∈ σα
i . In this situation, the system of equa-

tions that governs the tangential contact update is

Π
(
p j,β
n+1 − p̃ j,β

)
= −η j,βτ − ρ j,βξ , (43a)

Π
(
pi,γn+1 − p̃i,γ

)
= ηi,γ τ + ρi,γ ξ , (43b)

Π
(
p j,β
n+1

)
+

∑

γ |nγ
i ∈σα

i

Π
(
pi,γn+1

)
= Π( p̃ j,β)

+
∑

γ |nγ
i ∈σα

i

Π
(
p̃i,γ

)
, (43c)

Π( p j,β
n+1)

mβ
j

= Π( pi,γn+1)

mγ

i

. (43d)

A simple algebraic manipulation gives

η j,β = mβ
j Mα

i

mβ
j + Mα

i

(
ṽ j,β − ω̃i,α

)
· τ , (44)

which is always non-negative and ρ j,β

ρ j,β = mβ
j Mα

i

mβ
j + Mα

i

(
ṽ j,β − ω̃i,α

)
· ξ = 0, (45)

due to the orthonormality of τ and ξ . Combining the last
expressionswith Eq. (32), the stick condition can be rewritten
as

Mα
i

mβ
j + Mα

i

(
ṽ j,β − ω̃i,α

)
· τ ≤ μα

i

mβ
j + μα

i

μ(1 + e)
(
ν̃i,α − ṽ j,β

)
· n,

(46)

which, conveniently, only depends on quantities evaluated at
the predictor step.Using it, we can decide, explicitly, whether
the tangential motion during the update is going to involve
sliding or not.
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If, however, slip takes place, η j,β = μλ j,β , and the model
is completed by apportioning the impulse on the element
nodes proportionally to their masses, that is,

ηi,γ = mγ

i

Mα
i

η j,β , ρi,γ = mγ

i

Mα
i

ρ j,β , (47)

and by continuity between stick and slip contact we assume
ρ j,β = 0.

To conclude, it is useful to look at the balance of energy
during the projection step, and verify that indeed the update
defined for frictional contact in the tangential direction pro-
duces non-negative dissipation. To see this, we first note that
the kinetic energy of the contacting entities at the corrected
step can be expressed as a function of the velocities at the
predicted step and impulses in the normal and tangential
direction. Combining the velocity updates of Eqs. (18) and
(40) we can write the kinetic energy at the corrected step as

Kn+1=
∑

γ |nγ
i ∈σα

i

mγ

i

2

∣∣∣∣∣ṽ
i,γ − χ i,γ λ j,β

mγ

i

n + ηi,γ

mγ

i

τ + ρi,γ

mγ

i

ξ

∣∣∣∣∣

2

+ mβ
j

2

∣∣∣∣∣ṽ
j,β + λ j,β

mβ
j

n − η j,β

mβ
j

τ − ρ j,β

mβ
j

ξ

∣∣∣∣∣

2

.

(48)

For the case of stick frictional contact, the dissipation D =
K̃ − Kn+1 can be found to be

D = λ j,β ν̃i,α · n − (λ j,β)2

2μα
i

− (λ j,β)2

2mβ
j

− λ j,β ṽ j,β · n

−
∑

γ |nγ
i ∈σα

i

ηi,γ ṽi,γ · τ − 1

2

∑

γ |nγ
i ∈σα

i

(ηi,γ )2

mγ

i

− (η j,β)2

2mβ
j

+ η j,β ṽ j,β · τ −
∑

γ |nγ
i ∈σα

i

ρi,γ ṽi,γ · ξ

− 1

2

∑

γ |nγ
i ∈σα

i

(ρi,γ )2

mγ

i

,

(49)

where the first line of the right-hand side of the equation
above corresponds to Eq. (33) and is non-negative for the
value λ j,β in Eq. (32). The rest of the right-hand side is
the energy dissipated due to the frictional contact, namely
Dτ + Dξ , and can be elaborated to

Dτ =
∑

γ |nγ
i ∈σα

i

1

2
mγ

i (ṽi,γ · τ )2 − 1

2
Mα

i (ṽ j,β · τ )2

− Mα
i (η j,β)2

2(mβ
j )

2
+ η j,βMα

i

mβ
j

(ṽ j,β · τ )

+ η j,β(ṽ j,β · τ ) − (η j,β)2

2mβ
j

,

(50)

where we have employed that

ηi,γ = mγ

i

(
−η j,β

mβ
j

+ ṽ j,β · τ − ṽi,γ · τ

)
. (51)

By Jensen’s inequality,

Mα
i

2
(ω̃i,α · τ )2 ≤

∑

γ |nγ
i ∈σα

i

1

2
mγ

i (ṽi,γ · τ )2, (52)

and thus, using Eq. (44),

Dτ ≥ mβ
j M

α
i

2(mβ
j + Mα

i )

(
(ω̃i,α − ṽ j,β) · τ

)2
, (53)

which is non-negative. Similarly we can obtain that Dξ ≥ 0
where we have employed that

ρi,γ = mγ

i

(
ṽ j,β · ξ − ṽi,γ · ξ

)
, (54)

using Eq. (43). For the case of slip contact, the dissipation in
the correction step is now

D = λ j,β ν̃i,α · n − μλ j,β ω̃i,α · τ − λ j,β ṽ j,β · n

+ μλ j,β ṽ j,β · τ − (λ j,β)2

2

(
1

μα
i

+ μ2

Mα
i

+ 1 + μ2

mβ
j

)
.

(55)

This is a parabola on the non-negative scalar λ j,β , and evalu-
ates to a non-negative dissipation as long asλ j,β ∈ (0, λ j,β

D=0)

where λ
j,β
D=0 is

λ
j,β
D=0 = 2

(ν̃i,α − ṽ j,β) · n + μ(ṽ j,β − ω̃i,α) · τ

1
μα
i

+ μ2

Mα
i

+ 1+μ2

mβ
j

. (56)

Employing Eq. (46) to find the limit value, the dissipation
can be re-written as

λ
j,β
D=0 = 2

(ν̃i,α − ṽ j,β ) · n
1

μα
i

+ μ2

Mα
i

+ 1+μ2

mβ
j

(
1 + μ2(1 + e)

μα
i (mβ

j + Mα
i )

Mα
i (mβ

j + μα
i )

)
.

(57)

But this limit value can be bounded from below since

λ
j,β
D=0 ≥ 2

(ν̃i,α − ṽ j,β) · n
1

μα
i

+ 1
mβ

j

≥ (1 + e)
μα
i mβ

j

μα
i + mβ

j

(ν̃i,α − ṽ j,β) · n = λ j,β , (58)
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where the last identity follows Eq. (32). We conclude that
0 ≤ λ j,β ≤ λ

j,β
D=0 and thus the energy dissipation is also

non-negative in the slip case.

4.7 Relation of the proposed algorithmwith existing
methods

The most commonly employed methods for dealing with
contacting surfaces in explicit dynamics start from the defi-
nition of a gap function g that gauges the distance between
interacting bodies. Numerical methods are designed to keep
this function larger than or equal to zero and, potentially,
to impose forces in the direction of its gradient in order to
prevent it from becoming negative (see, for example, [4]).

Numerical methods of the type referred to impose the bal-
ance of linear momentum as in

pa,b
n+1− p̃a,b = λ

∂g(Φn)

∂ϕa,b
a = {i, j}, b = {γ |nγ

i ∈ σα
i , β},
(59)

with λ = κg(Φn), and κ a penalty constant. To reveal the
relation between these methods and the one presented in this
article let us consider the gap function

g({ϕi,γ }γ |nγ
i ∈σα

i
,ϕ j,β) =

〈
n,ϕ j,β −

∑

γ |nγ
i ∈σα

i

χ i,γ ϕi,γ

〉

(60)
where χ i,γ are the scalar coefficients defined in Eq. (22),
with node n j

β in the meshfree body and nodes nγ

i on the face
σα
i of a finite element mesh.
First, we note that the sum over nodes on the element

face σα
i is a convex combination that results in a point inside

the face. This shows that the function (60) is just measur-
ing the (signed) distance of the node n j

β to the surface σα
i ,

and thus it seems a potentially useful gap function. But sec-
ond, a straightforward calculation reveals that the impulse
equations (59) are precisely Eq.(18a), for the node nβ

j , and

Eqs. (18b) for the nodes nγ

i ∈ σα
i . Hence we conclude that

the algorithms developed herein, at least for the normal com-
ponent, are just a particular instance of gap-driven contact
methods, in which the gap function is given by Eq. (60).
Finally, we note that the method proposed in the current
work replaces the penalty form of the impulse λ with the
prediction/correction algorithm.

The structure and sequence of computations in the contact
algorithms presented in this section is summarized in the
Appendix as a flowchart.

5 Simulations

In this section we illustrate the performance of the proposed
contact algorithm on a set of selected examples that involve,

at least, one body discretizedwith finite elements and another
with a meshless method. To keep the computations as simple
as possible, and focus on the features of the contact interac-
tion, all finite elementmeshes consist of four-node tetrahedra.
While the use of hexahedra or higher order elements involve
no theoretical complexity, the detection of penetration and
the projection steps become much more involved.

5.1 Double elastic bar impact

In this test we analyze the elastic impact of two identical rods
against each other. The cylinders have radius and length equal
to 3.2 mm and 32.4 mm, respectively. One of the rods is dis-
cretized with finite elements and the other is discretized with
a meshfree method, with symmetry conditions employed
in both cases restricting the analysis to one-quarter of the
domain. The finite element and the meshfree bodies use,
respectively, 798 and 1093 nodes. The material of the rods
is hyperelastic and a neo-hookean model is employed with
Young’s modulus E = 117 GPa, Poisson’s ratio ν = 0.35,
and density 8930 kg/m3. The rods are launched at 113.5 m/s
against each other and compression waves are originated in
both bodies when they come into contact. These waves travel
back as release waves causing the bodies to separate, even-
tually. See Fig. 3 for an illustration.

This example shows that the proposed contact algorithm
is able to deal with high velocity impacts of finite ele-
ments/meshfree discretizations in a robust way, without the
need to adjust any penalty parameter. As a result, not only
the definition of the contact properties is simplified, but
also it has no influence whatsoever in the critical time step
size.

5.2 High velocity impact of a sphere with a
deformable plate

As hinted at in the introduction, high velocity impacts
are one of the most common applications of combined
finite elements/meshfree methods, especially when one of
the interacting bodies (typically the impactor) suffers large
distortions, even fracture. In the following example we
explore a situation of this type, and consider the friction-
less and elastic impact between a deformable sphere and
an elastic plate. The simulation illustrates the ability of
the method to model a very large number of impacting
“particles”, allowing a very robust simulation of fragmen-
tation.

The sphere of the example has a radius of 25 mm, it is
launched towards the plate with a velocity of 300 m/s in the
normal direction, and is discretized with a meshfree method,
employing 189 nodes. For high velocity impacts such as the
one under consideration, it is often decided that the impactor
behaves like a compressible fluid, breaking for any negative
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Fig. 3 Double Taylor bar
impact, Von Mises stress (Pa).
From left to right, solutions at
time t = 1, 5, 9, 12, 16, 21 μs

pressure. In this simulation, the sphere ismodeledwith a fluid
of dynamic viscosity ν = 0.1 Pa·s, density ρ = 3000 kg/m3,
and a linear equation of state with bulk modulus K = 5 GPa.
The plate has dimensions 0.01 × 0.15 × 0.15 m3 and is dis-
cretized with a finite element model of 512 nodes, with all
the displacements of the lateral surfaces constrained. The
material of the plate is neo-hookean, with Young’s modulus
E = 1 GPa, Poisson’s ratio ν = 0.33, and density ρ = 1740
kg/m3. The evolution of the von Mises stress is plotted in
Fig. 4, where the fragmentation of the (meshfree) sphere can
be observed. The vertical reaction of the plate supports, as a
function of time, is depicted in Fig. 5. As a result of the vibra-
tions induced on the plate, the maximum upwards reaction
takes place at approximately 150 µs, followed by a rever-
sal of the sign of this force. During the impact, the sphere
breaks into many small pieces, and each of them continues
to interact with the plate. The contact algorithm, without any
additional modification, deals with the new surface inter-
actions. Remarkably, the reaction force changes smoothly
in time, without the high frequency oscillations that often
appear in penalty-based contact solutions. The integration
algorithm does not employ artificial numerical dissipation,
and this smoothness is rather the result of the lack of large
penalty parameters in the numerical model.

5.3 Sliding block on an inclined plane

The sliding of a deformable neo-hookean cube of side with
length 0.03 m with Young’s modulus of value 70 GPa and
Poisson’s ratio 0.33, along a rigid plane with an inclination
of α = 15◦ is performed to assess the performance of the
contact algorithm with friction. See Fig. 6 for an illustration.
The contact considered is completely elastic (e = 1) and
with a friction coefficientμ = 0.1. The density of the sliding
box is 2800 kg/m3 and gravity has been set to the value g =
2000 m/s2 to reduce the simulation time. The cube has been
discretized with a meshfree method, employing 125 nodes,
while the motion of the plane is completely constrained. The
analytical solution for the acceleration of a sliding cube is

aplane = g(sin(α) − μ cos(α)). (61)

Since the acceleration is constant, the kinetic energy of the
cube, given its total mass m, is

K = 1

2
m(aplane t)

2. (62)

This solution is compared in Fig. 7 with the kinetic energy
in the simulation, and proves that the frictional contact algo-
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Fig. 4 Von Mises stress (Pa) of
the sphere impact with
deformable plate. From left to
right, top to bottom, solutions at
time t = 5, 32, 80, 132,
200, 302 µs
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Fig. 5 Normal force exerted on the plate

rithm captures accurately the global motion of the sliding
block.

5.4 Multi-body impact

A multi-body simulation is performed with elastic contact
among deformable bodies. All of the latter are cubes of
volume 0.033 m3, two of them discretized with a mesh-
free method, and another three with finite element meshes.
The cubes are set at the beginning of the simulation with
their edges aligned with the coordinate axes. The meshfree

Fig. 6 Meshfree cube on inclined plane
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Fig. 7 Kinetic energy of the sliding cube on an inclined plane
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Fig. 8 Arrangement of finite element/meshfree cubes

bodies have their centers of mass at the points (0, 0, 0) m
and (0, 0.0315, 0.0315) m. The centers of mass of the
three finite element cubes are, respectively, placed initially
at the points (0, 0.0315, 0.063) m, (0,− 0.0315, 0) m and
(0, 0.0315, 0)m (see Fig. 8 for an illustration). All the bodies
employ the same neo-hookean material with Young’s mod-
ulus 71 GPa, Poisson’s ratio 0.33 and density 2800 kg/m3.
The finite element and meshfree cubes are discretized with
125 nodes. An initial velocity (25.0,− 120.0, 100.0) m/s
is applied to the cube whose center of mass has position
(0, 0.0315, 0), setting up its motion and, due to the contact-
ing forces, the motion of all remaining cubes.

Figure 9 shows the evolution of the linear momentum,
which remains constant at all times. This is due to the fact that
the standard central difference method preserves the linear
momentum, and that the contact algorithm is designed to
preserve it during the projection step. Figure 10 depicts the
energy evolution, whose oscillations can be attributed to both
the central difference scheme and the contact interactions.
Finally, the evolution of von Mises stress on the cubes is
shown in Fig. 11, where the large motions of all the bodies
can be observed.

5.5 Taylor’s bar impact

We study next Taylor’s high velocity anvil impact [29], an
experiment for which there exists a wealth of experimental
data and is often employed to study the rate dependent elasto-
plastic behavior of materials and the ability of algorithms to
capture it [30,31]. Taylor’s test consists of a metallic cylin-
der launched at high velocity against a wall or plate. When
one of the flat surfaces of the cylinder impacts, the specimen
deforms plastically and its final shape—which conserves the
axial symmetry—can be measured easily.
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Fig. 9 Linear momenta evolution for multi-body impact
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Fig. 10 Total energy evolution for multi-body impact

One of the constitutive laws that is often employed to
model metals with rate- and temperature-dependent elasto-
plastic behavior is Johnson–Cook’s [32]. This J2 model
employs a yield stress of the form

σy = (A + BεN )

(
1 + C log

ε̇

ε0

) (
1 −

(
T − T0
Tm − T0

)M
)

.

(63)

In this expression, ε is the accumulated plastic strain, ε̇ its
rate, and T , Tm and T0 are, respectively, the current, melting,
and reference temperatures of the material. The parameters
A, B, N , M, ε̇0 are material constants that, together with
Laméparametersλ andμ, completely determine the response
of the material.

Based on this test, we analyze next the impact of a cop-
per cylinder launched onto a wall at 227 m/s [30,32,33].
The parameters of the Johnson–Cook’s model are given
in Table 1. The density is taken to be ρ = 8960 kg/m3

and the Lamé elastic constants are λ = 150 × 103 MPa,
μ = 75 × 103 MPa. The simulation assumes isothermal
conditions at temperature T = 300 K and the anvil initial
diameter and length are, respectively, 7.62mmand 25.4mm.

In the simulation, the cylinder is placed 1.3mm away from
the plate, which is considered to be completely rigid by con-

123



Computational Mechanics

Fig. 11 Von Mises stress (Pa)
for multi-body impact. From left
to right, top to bottom, solutions
at time
t = 19, 49, 79, 128, 295, 376 µs

Table 1 Johnson–Cook constants for copper

A (MPa) B (MPa) C (–) N (–) M (–) T0 (K) Tm (K)

90 292 0.025 0.31 1.09 300.0 1356.0

straining the displacements of all of its nodes. The Coulomb
friction coefficient in the contact is assumed to be constant
and equal to 0.1, and the restitution coefficient is taken to be
zero, modeling a perfectly inelastic impact. Approximately
5.7 after the anvil is launched, it impacts the plate and starts
deforming with large plastic deformations. Figure 12 shows

six snapshots of the simulations, illustrating the deformations
in the model and the field of plastic slip. The figures depict
this slip at the material points, and also shows in black the
nodes in the finite element and meshfree bodies.

5.6 Oblique elastoplastic impact

In the last example, we consider the high-velocity, elasto-
plastic oblique impact with friction of a deformable sphere
against a deformable plate as previously proposed in the lit-
erature [19]. The diameter of the sphere and the thickness of
the plate are both equal to 6.4mm. The other two dimensions
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Fig. 12 Taylor’s anvil test. From left to right, top to bottom, deformed
configurations at time t ∼ 11.2 · k , with k = 0, 1, . . . , 5, showing the
plastic slip evolution

of the plate are taken to be equal to 20 mm, in x direction,
and 30 mm in y direction. See Fig. 13 for an illustration of
the geometry and the definition of the coordinate axes. The
sphere has an initial velocity of 700 m/s towards the plate
with an angle of 0.35 rad with respect to the plate’s surface.

The sphere and plate are both of steel. The former has
the properties of S7 steel, whereas the latter is of type 4340.
Both materials are modeled with a Johnson–Cook’s law (see
Eq. 63) with the data given for these two steels in their origi-

Fig. 13 Elastoplastic oblique impact of a sphere with a plate. Initial
configuration, showing the finite element mesh and meshless body

nal article [32]. For convenience, these data are summarized
in Table 2, including the density ρ. In addition, for bothmate-
rials we have considered that Young’s modulus is 210 GPa,
Poisson’s ratio is 0.3, and assumed isothermal conditions at
300 K.

The meshfree sphere includes 189 nodes and 3072 mate-
rial points. The finite element model of the plate has
approximately 37,000 elements and 7500 nodes. All the
nodes on the lateral faces of the plate have their degrees of
freedom constrained. The contact is completely elastic and
Coulomb’s friction coefficient is 0.05. Figure 14 shows six
snapshots of the impact process, cutting the model by the
symmetry plane perpendicular to the x axis. The figure illus-
trates the presence of plastic deformation in the finite element
and meshfree bodies.

The evolution of the linear momentum and energy of the
sphere are shown in Figs. 15 and 16, respectively. The first
figure confirms a smooth change of momentum in both the
normal and tangential directions to the plate. The second one
illustrates the good energy control of the method during the
contact phase. We note that no smoothing has been applied
on any of the curves depicted.

6 Summary

We have presented a new algorithm for contact/impact in
explicit simulations of deformable bodies. The proposed
method has several salient features that make it very appeal-
ing for general purpose computations. First, it imposes very
mild stability restrictions on the time step size employed in
the integration. Second, it bypasses the need to choose a
penalty parameter since the impenetrability constraint is not
imposed with an artificial stiffness, but rather with a projec-
tion scheme. This has shown to produce reaction forces and
momenta exchangeswithout spurious high frequencyoscilla-
tions. Third, it possesses favorable energy estimates for con-
tact with orwithout friction and/or perfect restitution. Fourth,
it is asymmetric by construction, and thus can be employed
for modeling interactions between finite element models, or
between a finite element model and a meshfree one.
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Table 2 Johnson–Cook
constants for steels

Steel type A (MPa) B (MPa) C (–) N (–) M (–) T0 (K) Tm (K) ρ (kg/m3)

4340 792 510 0.014 0.26 1.03 300 1793 7830

S7 1539 447 0.012 0.18 1.00 300 1763 7750

Fig. 14 Impact of elastoplastic
sphere. From left to right, top to
bottom, deformed
configurations at time t ∼ 4 · k ,
with k = 0, 1, . . . , 5, showing
the plastic slip evolution and cut
by the plane of symmetry
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Fig. 15 Linear momentum components of the sphere during the impact
of example 5.6

Overall, themethod is simple to implement, and extremely
robust for all types of contact simulations, including those
involving bodies with sharp edges or corners. We have illus-
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Fig. 16 Total energy of the sphere during the impact of example 5.6

trated its performance by means of representative examples,
including high velocity impacts, contact in fragmenting bod-
ies, elastic and inelastic materials, and impact among bodies
with sharp corners, all of them involving both finite element
and meshfree discretizations.
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Appendix: Flowchart

See Fig. 17.

Fig. 17 Flowchart of the
dynamic update in one time step,
including the contact algorithm
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